BZOJ5206: [Jsoi2017]原力
BZOJ5206: [Jsoi2017]原力
https://lydsy.com/JudgeOnline/problem.php?id=5206
分析:
- 比较厉害的三元环问题。
- 设立阈值,当点的度数大于根号时,考虑直接枚举三个点算答案。
- 否则,只需要考虑存在一个点度数小于等于根号的情况,枚举这个点,枚举它的两个出边即可,需要保证它是所选三个点中度数小于根号的编号最小的一个。
- 如果距离用\(map\)存,时间复杂度会多一个\(\log\)
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <map>
#include <cmath>
using namespace std;
#define N 50050
#define M 200050
#define mod 1000000007
typedef long long ll;
int n,m,head[N],to[M],nxt[M],val[M],opp[M],cnt,du[N],a[N],la,vis[N];
char opt[5];
map<int,ll>dis[N][3];
inline void add(int u,int v,int w,int o) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w; opp[cnt]=o;
}
int main() {
scanf("%d%d",&n,&m);
int i,x,y,z,o,S=sqrt(n);
for(i=1;i<=m;i++) {
scanf("%d%d%d%s",&x,&y,&z,opt);
if(opt[0]=='R') o=0;
else if(opt[0]=='G') o=1;
else o=2;
dis[x][o][y]+=z;
dis[y][o][x]+=z;
add(x,y,z,o);
add(y,x,z,o);
du[x]++; du[y]++;
}
ll ans=0;
for(i=1;i<=n;i++) {
if(du[i]>S) a[++la]=i;
}
int j,k;
for(i=1;i<=la;i++) {
x=a[i];
for(j=1;j<=la;j++) if(dis[x][0][a[j]]) {
y=a[j]; ll t1=dis[x][0][y];
for(k=1;k<=la;k++) if(dis[y][1][a[k]]) {
z=a[k];
ans=(ans+t1*dis[y][1][z]%mod*dis[z][2][x])%mod;
}
}
}
for(x=1;x<=n;x++) if(du[x]<=S) {
vis[x]=1;
for(i=head[x];i;i=nxt[i]) if(!vis[to[i]]) {
ll t=val[i];
for(j=nxt[i];j;j=nxt[j]) if(!vis[to[j]]&&opp[i]!=opp[j]&&to[i]!=to[j]) {
ans=(ans+t*val[j]%mod*dis[to[i]][3-opp[i]-opp[j]][to[j]])%mod;
}
}
}
printf("%lld\n",ans);
}
BZOJ5206: [Jsoi2017]原力的更多相关文章
- BZOJ5206 JSOI2017原力(三元环计数)
首先将完全相同的边的权值累加.考虑这样一种trick:给边确定一个方向,由度数小的连向度数大的,若度数相同则由编号小的连向编号大的.这样显然会得到一个DAG.那么原图的三元环中就一定有且仅有一个点有两 ...
- BZOJ5206 [Jsoi2017]原力[根号分治]
这是一个三元环计数的裸题,只是多了一个颜色的区分和权值的计算罢了. 有一种根号分治的做法(by gxz) 这种复杂度的证明特别显然,思路非常简单,不过带一个log,可以用unordered_map或者 ...
- 【bzoj5206】[Jsoi2017]原力 根号分治+STL-map
题目描述 一个原力网络可以看成是一个可能存在重边但没有自环的无向图.每条边有一种属性和一个权值.属性可能是R.G.B三种当中的一种,代表这条边上原力的类型.权值是一个正整数,代表这条边上的原力强度.原 ...
- [JSOI2017]原力(分块+map(hash))
题目描述 一个原力网络可以看成是一个可能存在重边但没有自环的无向图.每条边有一种属性和一个权值.属性可能是R.G.B三种当中的一种,代表这条边上 原力的类型.权值是一个正整数,代表这条边上的原力强度. ...
- bzoj 5206 [Jsoi2017]原力
LINK:原力 一张无向图 这道题统计三元环的价值和.有重边但是无自环. 我曾经写过三元环计数 这个和那个题差不太多. 不过有很多额外操作 对于重边问题 我们把所有颜色相同的重边缩在一起 这样的话我们 ...
- [JSOI2017]原力
题目大意: 一个$n(n\le5\times10^4)$个点,$m(m\le10^5)$条边的无向图.每条边有一个边权$w_i(w_i\le10^6)$和一个附加属性$t_i(t_i\in\{R,G, ...
- 报名 | 蚂蚁金服ATEC科技大会 · 上海:数字金融新原力
小蚂蚁说: 2019年1月4日,蚂蚁金服ATEC城市峰会将以“数字金融新原力(The New Force of Digital Finance)”为主题,在中国上海举办.蚂蚁金服ATEC(Ant Te ...
- 第3届云原生技术实践峰会(CNBPS 2020)重磅开启,“原”力蓄势待发!
CNBPS 2020将在11月19-21日全新启动!作为国内最有影响力的云原生盛会之一,云原生技术实践峰会(CNBPS)至今已举办三届. 在2019年的CNBPS上,灵雀云CTO陈恺喊出"云 ...
- CSDN 原力(声望,影响力) -- 设计草案
目标 CSDN 希望成为开发者学习,成长和成就的平台.我们已经有很多功能来支持开发者的职业成长了, 如何衡量成就呢?我们希望用 原力 (以前也叫 影响力,声望) 来体现用户的成就, 并希望用原力来帮助 ...
随机推荐
- Python学习进程(9)序列
序列是Python中最基本的数据结构. (1)序列简介: 序列中的每个元素都分配一个数字标明它的位置或索引,第一个索引是0,第二个索引是1,依此类推.序列都可以进行的操作包括索引,切片,加,乘 ...
- flask实现模仿知乎
上个月花了一个月的时间学习flask框架实现了一个简陋的知乎,有提问,回答,写文章,个人信息页,个人信息修改等功能,因刚接触学习flask,后端代码实现很多冗余,依旧需要修改. github: htt ...
- Django用户注册、邮箱验证实践
算法流程如下:1)处理用户注册数据,存入数据库,is_activity字段设置为False,用户未认证之前不允许登陆2)产生token,生成验证连接URL3)发送验证邮件4)用户通过认证邮箱点击验证连 ...
- R的基础学习之数据结构
来源:http://blog.qiubio.com:8080/archives/3753/4 1.atomic vector :一维的,放置同一类型数据的数据类型 1.1创建:由c()函数 ,seq( ...
- Python安装setuptools时报Compression requires the (missing) zlib
装机员为您提供Python安装setuptools时报Compression requires the (missing) zlib的文章咨询供您阅读,如何使用Python安装setuptools时报 ...
- springmvc注解基本入门
简单介绍使用springmvc注解的基本流程. 1.在web.xml中配置DispatcherServlet <?xml version="1.0" encoding=&qu ...
- 基于netty的异步http请求
package com.pt.utils; import io.netty.bootstrap.Bootstrap; import io.netty.channel.ChannelFuture; im ...
- java基础10(IO流)-字节流
IO流 输入与输出[参照物是程序] 如果从键盘.文件.网络甚至是另一个进程(程序或系统)将数据读入到程序或系统中,称为输入 如果是将程序或系统中的数据写到屏幕.硬件上的文件.网络上的另一端或者是一个进 ...
- MapReduce-计数器
计数器 计数器是收集作业统计信息的有效手段之一,用于质量控制或应用级统计.计数器还可辅助诊断系统故障.根据计数器值来记录某一特定事件的发生比分析一堆日志文件容易得多.内置计数器Hadoop为每个作业维 ...
- Kafka详解五:Kafka Consumer的底层API- SimpleConsumer
问题导读 1.Kafka如何实现和Consumer之间的交互?2.使用SimpleConsumer有哪些弊端呢? 1.Kafka提供了两套API给Consumer The high-level Con ...