PP: Neural ordinary differential equations
Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network.
Before: a discrete sequence of hidden layers.
After: the derivative of the hidden state.
Traditional methods: residual networks, RNN decoders, and normalizing flows build complicated transformations by composing a sequence of transformations to a hidden state.
we parameterize the continuous dynamics of hidden units using an ordinary differential equation (ODE) 常微分函数.
将h(t) 看作一个函数,可以用一个neural network学习h(t)的分布,然后输入层h(0) ----> 输出层h(T);
PP: Neural ordinary differential equations的更多相关文章
- NIPS2018最佳论文解读:Neural Ordinary Differential Equations
NIPS2018最佳论文解读:Neural Ordinary Differential Equations 雷锋网2019-01-10 23:32 雷锋网 AI 科技评论按,不久前,NeurI ...
- Solving ordinary differential equations I(Nonstiff Problems),Exercise 1.2:A wrong solution
(Newton 1671, “Problema II, Solutio particulare”). Solve the total differential equation $$3x^2-2ax+ ...
- Solving ordinary differential equations I(nonstiff problems),exercise 1.1
Solve equation $y'=1-3x+y+x^2+xy$ with another initial value $y(0)=1$. Solve: We solve this by using ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
- A Basic Course in Partial Differential Equations
A Basic Course in Partial Differential Equations, Qing Han, 2011 [下载说明:点击链接,等待5秒, 点击右上角的跳过广告后调至下载页面, ...
- 【线性代数】6-3:微分方程的应用(Applications to Differential Equations)
title: [线性代数]6-3:微分方程的应用(Applications to Differential Equations) categories: Mathematic Linear Algeb ...
- symmetry methods for differential equations,exercise 1.4
tex文档: \documentclass[a4paper, 12pt]{article} % Font size (can be 10pt, 11pt or 12pt) and paper size ...
- Introduction to Differential Equations,Michael E.Taylor,Page 3,4 注记
此文是对 [Introduction to Differential Equations,Michael E.Taylor] 第3页的一个注记.在该页中,作者给了微分方程$$\frac{dx}{dt} ...
- PP: Neural tensor factorization
relational data. Neural collaborative filtering and recurrent recommender systems have been successf ...
随机推荐
- JavaScript之BOM基础
BOM(Browser Object Model)也叫浏览器对象,它提供了很多对象,用于访问浏览器的功能.但是BOM是没有标准的,每一个浏览器厂家会根据自己的需求来扩展BOM对象.本文主要以一些简单的 ...
- Explain执行计划与索引优化实践
一.何为explain执行计划? 使用explain关键字可以模拟优化器执行SQL语句,从而知道MySQL是如何使用索引来处理你的SQL查询语句以及连接表,可以分析查询语句或是结构的性能瓶颈,帮助我们 ...
- BUUCTF 部分wp
目录 Buuctf crypto 0x01传感器 提示是曼联,猜测为曼彻斯特密码 wp:https://www.xmsec.cc/manchester-encode/ cipher: 55555555 ...
- python基礎學習第一天
python歷史 Python 是一种解释型.面向对象.动态数据类型的高级程序设计语言.Python 由 Guido van Rossum 于 1989 年底在荷兰国家数学和计算机科学研究所设计出来 ...
- 吴裕雄--天生自然 R语言数据可视化绘图(3)
par(ask=TRUE) opar <- par(no.readonly=TRUE) # record current settings # Listing 11.1 - A scatter ...
- Linux命令详解之–chmod命令
在Linux中,一般使用chmod命令来修改文件的属性. 利用 chmod 可以藉以控制文件如何被他人所调用.此命令所有使用者都可使用. 一.Linux chmod命令语法Linux chmod 命令 ...
- eclipse 项目资源与 java 编译器级别不致总是;说明资源路径位置类型Java编译器级别不匹配t
问题:Description Resource Path Location Type Java compiler level does not match t 今天在自己项目中整合HBase API的 ...
- cf1214E
题意简述:构造一棵包含2*n个节点的树,要求2*i 和 2*i-1之间的距离等于d[i]<=n 1<=i<=n 给出N和d数组,输入对应的边 题解:对d数组按照从大到小排序,然后首先 ...
- 【剑指Offer】61、把二叉树打印成多行
题目描述 从上到下按层打印二叉树,同一层结点从左至右输出.每一层输出一行. 题解一:BFS public static ArrayList<ArrayList<Integer>> ...
- MyEclipse配置和使用Maven
maven是管理项目的,myeclipse是编写代码的.第一次写项目都要配置好多东西,很麻烦,now 来看看怎样新建一个maven项目. 工具/原料 myeclipse maven 方法/步骤 ...