You want to perform the combo on your opponent in one popular fighting game. The combo is the string ss consisting of nn lowercase Latin letters. To perform the combo, you have to press all buttons in the order they appear in ss . I.e. if s=s= "abca" then you have to press 'a', then 'b', 'c' and 'a' again.

You know that you will spend mm wrong tries to perform the combo and during the ii -th try you will make a mistake right after pipi -th button (1≤pi<n1≤pi<n ) (i.e. you will press first pipi buttons right and start performing the combo from the beginning). It is guaranteed that during the m+1m+1 -th try you press all buttons right and finally perform the combo.

I.e. if s=s= "abca", m=2m=2 and p=[1,3]p=[1,3] then the sequence of pressed buttons will be 'a' (here you're making a mistake and start performing the combo from the beginning), 'a', 'b', 'c', (here you're making a mistake and start performing the combo from the beginning), 'a' (note that at this point you will not perform the combo because of the mistake), 'b', 'c', 'a'.

Your task is to calculate for each button (letter) the number of times you'll press it.

You have to answer tt independent test cases.

Input

The first line of the input contains one integer tt (1≤t≤1041≤t≤104 ) — the number of test cases.

Then tt test cases follow.

The first line of each test case contains two integers nn and mm (2≤n≤2⋅1052≤n≤2⋅105 , 1≤m≤2⋅1051≤m≤2⋅105 ) — the length of ss and the number of tries correspondingly.

The second line of each test case contains the string ss consisting of nn lowercase Latin letters.

The third line of each test case contains mm integers p1,p2,…,pmp1,p2,…,pm (1≤pi<n1≤pi<n ) — the number of characters pressed right during the ii -th try.

It is guaranteed that the sum of nn and the sum of mm both does not exceed 2⋅1052⋅105 (∑n≤2⋅105∑n≤2⋅105 , ∑m≤2⋅105∑m≤2⋅105 ).

It is guaranteed that the answer for each letter does not exceed 2⋅1092⋅109 .

Output

For each test case, print the answer — 2626 integers: the number of times you press the button 'a', the number of times you press the button 'b', …… , the number of times you press the button 'z'.

Example
Input

 
3
4 2
abca
1 3
10 5
codeforces
2 8 3 2 9
26 10
qwertyuioplkjhgfdsazxcvbnm
20 10 1 2 3 5 10 5 9 4
Output

 
4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 9 4 5 3 0 0 0 0 0 0 0 0 9 0 0 3 1 0 0 0 0 0 0 0
2 1 1 2 9 2 2 2 5 2 2 2 1 1 5 4 11 8 2 7 5 1 10 1 5 2
大意就是给定一个字符串和一个序列p,第i次遍历字符串走到pi的位置就回到开头重新走,最后一次走完,问每个字母各出现了多少次。看数据范围直接暴力肯定不行。我一开始想的是从头往后对于每个位置求26个字母出现次数的前缀和,但这样会在第五个点T。看博客学习到了一个巧妙的解法,首先读入p数组的时候用一个和字符串等长的数组记录返回的位置,vis[p[i]]++,之后从后往前遍历。用一个变量cnt记录当前字母访问过的“次数”。
凡是遇到有标记的地方,直接cnt+=vis[i]。因为是从前往后遍历的,所以直接加上没有问题。然后是统计字幕出现次数的数组b[s[i]-'a']+=cnt;说明有多少趟经过这个字母了,直接统计到总的出现次数里即可。

Codeforces Round #624 (Div. 3) C. Perform the Combo(前缀和)的更多相关文章

  1. Codeforces Round #624 (Div. 3)(题解)

    Codeforces Round #624 (Div.3) 题目地址:https://codeforces.ml/contest/1311 B题:WeirdSort 题意:给出含有n个元素的数组a,和 ...

  2. Codeforces Round #297 (Div. 2)B. Pasha and String 前缀和

    Codeforces Round #297 (Div. 2)B. Pasha and String Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: xxx ...

  3. Codeforces Round #624 (Div. 3)(题解)

    A. Add Odd or Subtract Even 思路: 相同直接为0,如果两数相差为偶数就为2,奇数就为1 #include<iostream> #include<algor ...

  4. Codeforces Round #624 (Div. 3) F. Moving Points 题解

    第一次写博客 ,请多指教! 翻了翻前面的题解发现都是用树状数组来做,这里更新一个 线段树+离散化的做法: 其实这道题是没有必要用线段树的,树状数组就能够解决.但是个人感觉把线段树用熟了会比树状数组更有 ...

  5. Codeforces Round #624 (Div. 3) D. Three Integers

    You are given three integers a≤b≤ca≤b≤c . In one move, you can add +1+1 or −1−1 to any of these inte ...

  6. Codeforces Round #624 (Div. 3) A. Add Odd or Subtract Even(水题)

    You are given two positive integers aa and bb . In one move, you can change aa in the following way: ...

  7. 详细讲解Codeforces Round #624 (Div. 3) E. Construct the Binary Tree(构造二叉树)

    题意:给定节点数n和所有节点的深度总和d,问能否构造出这样的二叉树.能,则输出“YES”,并且输出n-1个节点的父节点(节点1为根节点). 题解:n个节点构成的二叉树中,完全(满)二叉树的深度总和最小 ...

  8. 详细讲解Codeforces Round #624 (Div. 3) F. Moving Points

    题意:给定n个点的初始坐标x和速度v(保证n个点的初始坐标互不相同), d(i,j)是第i个和第j个点之间任意某个时刻的最小距离,求出n个点中任意一对点的d(i,j)的总和. 题解:可以理解,两个点中 ...

  9. Codeforces Round #624 (Div. 3)

    A.题意:通过加奇数减偶数的操作从a到b最少需要几步 签到题 #include <algorithm> #include <iostream> #include <cst ...

随机推荐

  1. 跨AppDomain通信

    public class AppDomainTest : MarshalByRefObject { public string TestMethodStr(string srcAppDomain) { ...

  2. EL表达式无法获取boolean类型变量值

    今天调试个程序, 有个名为isAdmin的boolean类型的变量在jsp页面获取到的值为空, 这根本就是没获取到或者变量不存在的状况啊,但是在Action中明明是赋值成false了. 上网查了一下有 ...

  3. C++——动态内存分配2-创建对象数组

    //创建对象数组 #include<iostream> using namespace std; class Point { public:        Point()       {  ...

  4. Spring Boot整合Dubbo2.x,解决其中遇到的坑

    Dubbo了解 a high-performance, java based open source RPC framework. Dubbo官网 源码 文档 快速知道用法 本地服务 Spring 配 ...

  5. python之路正则表达式

    元字符 蓝色框中有非贪婪模式也不起作用,非贪婪模式在+后加上?号 有空字符串

  6. Go生成随机数

    生成随机数 概念 伪随机数,都是根据一定的算法公式算出来的. 所在包 math/rand 生成随机数的公式需要一个种子数,一般为整数.种子数相同会导致每次启动程序是生成随机数相同,为了避免重复每次生成 ...

  7. Codeforces Round #600 (Div. 2) C - Sweets Eating

    #include<iostream> #include<algorithm> #include<cstring> using namespace std ; typ ...

  8. mybatis-plus QueryWrapper自定义查询条件

    mybatis-plus QueryWrapper自定义查询条件 mybatis-plus框架功能很强大,把很多功能都集成了,比如自动生成代码结构,mybatis crud封装,分页,动态数据源等等, ...

  9. 使用Python发送、订阅消息

    使用Python发送.订阅消息 使用插件 paho-mqtt 官方文档:http://shaocheng.li/post/blog/2017-05-23 Paho 是一个开源的 MQTT 客户端项目, ...

  10. EF中的实体关系

    导航属性的理解: 指数据库的表所对应的实体类,除了要有每个字段所对应的属性之外,还应该有一个与之有关联的表的属性,一对一的关系就是关联表的类型,一对多的关系就是关联表的类型的ICollection的泛 ...