UVA1349

题意:给定一些有向带权边,求出把这些边构造成一个个环,总权值最小

解法:

对于带权的二分图的匹配问题可以用通过KM算法求解。

要求最大权匹配就是初始化g[i][j]为0,直接跑就可以;

要求最小权匹配就是初始化g[i][j]为-INF,加边的时候边权为负,最后输出答案的相反数。

因为要求每个点恰好属于一个圈,意味着每个点都有一个唯一的后继。 反过来,只要每个点都有唯一的后继,每个点一定属于某个圈。

唯一的是我们想到了二分图的概念,我们对于每个点,建立由u到v的二分图, 之后问题就转换成了二分图上的最小权完美匹配问题

 #include<bits/stdc++.h>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
#define MEM(a,x) memset(a,x,sizeof(a))
#define INF 0x3f3f3f3f
#define MAXN 100+10
using namespace std; struct KM {
int n;
int g[MAXN][MAXN];
int Lx[MAXN], Ly[MAXN];
int slack[MAXN];//记录距X匹配到Y点还需要多少权值
int match[MAXN];//记录每个X点匹配到的Y集中的点
bool S[MAXN], T[MAXN]; void init(int n) {
this->n = n;
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
g[i][j] = -INF;
//注意这里如果是求最大权值匹配和就赋值为0
//最小权值匹配和就是—INF
} void add_Edge(int u, int v, int val) {
g[u][v] = max(g[u][v], val);
} bool dfs(int i) {
S[i] = true;
for (int j = ; j < n; j++) {
if (T[j]) continue;
int tmp = Lx[i] + Ly[j] - g[i][j];
if (!tmp) {
T[j] = true;
if (match[j] == - || dfs(match[j])) {
match[j] = i;
return true;
}
}
else slack[j] = min(slack[j], tmp);
}
return false;
} void update() {
int a = INF;
for (int i = ; i < n; i++)
if (!T[i]) a = min(a, slack[i]);
for (int i = ; i < n; i++) {
if (S[i]) Lx[i] -= a;
if (T[i]) Ly[i] += a;
}
} void km() {
for (int i = ; i < n; i++) {
match[i] = -;
Lx[i] = -INF; Ly[i] = ;
for (int j = ; j < n; j++)
Lx[i] = max(Lx[i], g[i][j]);
}
for (int i = ; i < n; i++) {
for (int j = ; j < n; j++) slack[j] = INF;
while () {
for (int j = ; j < n; j++) S[j] = T[j] = false;
if (dfs(i)) break;
else update();
}
}
}
}Men; int main() {
int n;
while (scanf("%d", &n) == && n) {
Men.init(n);
REP(u, , n) {
int v;
while (scanf("%d", &v) && v) {
int w; scanf("%d", &w);
v--;
Men.add_Edge(u, v, -w);
}
} Men.km();
int ans = , flag = ;
REP(i, , n) {
if (Men.g[Men.match[i]][i] == -INF) {
//有未匹配到,就是不成功,因为题目要求的是完美匹配
flag = ;
break;
}
ans += Men.g[Men.match[i]][i];//累加权值
}
if (!flag) printf("N\n");
else printf("%d\n", -ans);//最后是输出的是负数
}
return ;
}

UVA1349(带权二分图最大匹配 --> KM算法模板)的更多相关文章

  1. 带权二分图最大匹配KM算法

    二分图的判定 如果一个图是连通的,可以用如下的染色法判定是否二分图: 我们把X部的结点颜色设为0,Y部的颜色设为1. 从某个未染色的结点u开始,做BFS或者DFS .把u染为0,枚举u的儿子v.如果v ...

  2. HDU 2255 奔小康赚大钱(带权二分图最大匹配)

    HDU 2255 奔小康赚大钱(带权二分图最大匹配) Description 传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房子. 这可是一件大事,关系到人民的住房问题啊 ...

  3. Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配)

    Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配) Description 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的 ...

  4. SPOJ 4206 Fast Maximum Matching (二分图最大匹配 Hopcroft-Carp 算法 模板)

    题目大意: 有n1头公牛和n2头母牛,给出公母之间的m对配对关系,求最大匹配数.数据范围:  1 <= n1, n2 <= 50000, m <= 150000 算法讨论: 第一反应 ...

  5. "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

    博文“二分图的最大匹配.完美匹配和匈牙利算法”对二分图相关的几个概念讲的特别形象,特别容易理解.本文介绍部分主要摘自此博文. 还有其他可参考博文: 趣写算法系列之--匈牙利算法 用于二分图匹配的匈牙利 ...

  6. HDU 1045 - Fire Net - [DFS][二分图最大匹配][匈牙利算法模板][最大流求二分图最大匹配]

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045 Time Limit: 2000/1000 MS (Java/Others) Mem ...

  7. 牛客多校第五场 E room 二分图匹配 KM算法模板

    链接:https://www.nowcoder.com/acm/contest/143/E来源:牛客网 Nowcoder University has 4n students and n dormit ...

  8. 51Nod 飞行员配对(二分图最大匹配)(匈牙利算法模板题)

    第二次世界大战时期,英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2名飞行员,其中1名是英国飞行员,另1名是外籍飞行员.在众多的飞行员中, ...

  9. 二分图最大匹配 Hopcroft-Karp算法模板

    #include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> ...

随机推荐

  1. jmeter新手学习笔记(一)

    使用jmeter做接口测试--设置线程组 1.创建线程组 2.设置线程数配置信息 线程组:常用于模拟并发用户访问,例如需要100个用户访问该接口,线程数则设置为100 Ramp-Up Period:决 ...

  2. Codeforces_801

    A.直接暴力就行了,先把能组合的按线性组合掉,再枚举剩下相邻没用过的. #include<bits/stdc++.h> using namespace std; string s; ] = ...

  3. Codeforces_733_D

    http://codeforces.com/problemset/problem/733/D 先给边排序,然后按3条边排序,只要判断相邻是否能组成长方体. #include<iostream&g ...

  4. 【题解】P1908 逆序对——归并算法

    先吐槽 这题做了两天,昨天讲分治,老师用归并讲了一遍,今天又用树状数组讲了一遍 归并不难,啊啊啊我居然才调出来 思路 归并两个数组时,对于第二个数组的元素a[c2],它与第一个数组中目前还没归到总数组 ...

  5. MySQL的简介

    什么是数据库 1. 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,每个数据库都有一个或多个不同 的API(接口)用于创建,访问,管理,搜索和复制所保存的数据 2. 我们也可以将 ...

  6. Centos 下设置静态ip地址

       今天小编遇到了需要设置centos(6.4) 下静态ip地址,下面把详细步骤记录下来. 1> 首先打开这个 vi /etc/sysconfig/network-scripts/ifcfg- ...

  7. ELF文件之一——

    ELF文件整体布局 下图是后来例子中main.o和main.elf的布局. 其中,只有elf header的位置是固定的,固定在文件开始,其它部分的位置都不确定. 比如下面的main.o布局中,.te ...

  8. cdh集群hive升级,数据不丢失

    1.下载hive-1.2.1安装包 http://archive.apache.org/dist/hive/hive-1.2.1/apache-hive-1.2.1-bin.tar.gz 2.将安装包 ...

  9. Linux运维--实践-Rally

    1.rally简介 OpenStack Rally 是一个自动化测试工具,社区希望通过 Rally 来解答 "How does OpenStack work at scale?(如何规模化运 ...

  10. scons自动化构建工具

    方式一 可以官方下载,安装使用 方式二 使用 RT-Thread env工具,其中集成了scons工具 env工具配置 打开设置 添加到右键菜单 使用scons生成mdk5工程 > scons ...