题目描述

输入两个正整数a和b,求a^b的因子和。结果太大,只要输出它对9901的余数。

输入输出格式

输入格式:

仅一行,为两个正整数a和b(0≤a,b≤50000000)。

输出格式:

a^b的因子和对9901的余数。

输入输出样例

输入样例#1:

2 3
输出样例#1:

15
看似不可做,其实非常简单
任意正整数都有且只有一种方式写出其素因子的乘积表达式。

A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
其中 pi 均为素数
那么A^B=(p1^(k1*B))*(p2^(k2*B))*(p3^(k3*B))*....*(pn^(kn*B))
显然ans=∑i1i2.....∑ik(p1^i1)*(p2^i2)*.....(pk^ik)
   =i1(p1^i1)i2(p2^i2).....∑ik(pk^ik) 但是k*B最大可以达到30000×50000000(极限估算)
这里我们运用指数取模的方法,因为模数很小
根据费马小定理,我们证出:
a^x≡a^(x%μ(p)) (mod p) μ(p)=9900,p=9901
这样我们发现,i(p^i)其实存在长度为μ(p)的循环节
这样,就算k*B再大,我们也可以通过O(μ(p))的求和处理算出循环节
然后就可以直接算出i(p^i)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lol;
lol A,B,pri[],cnt[],ans,pw[],tot;
int main()
{lol x,i,j;
cin>>A>>B;
x=A;
for (i=;i*i<=A;i++)
{
if (x%i==)
{
pri[++tot]=i;
while (x%i==)
{
cnt[tot]++;
x/=i;
}
}
}
if (x!=)
{
pri[++tot]=x;
cnt[tot]=;
}
for (i=;i<=tot;i++)
cnt[i]*=B;
ans=;
for (i=tot;i>=;i--)
{
pw[]=;
lol s=,as=;
for (j=;j<=&&j<=cnt[i];j++)
{
pw[j]=pw[j-]*pri[i]%;
s=(s+pw[j])%;
if (cnt[i]%==j)
as=s;
}
ans=(ans*((cnt[i]/)*s+as)%)%;
}
cout<<ans;
}

洛谷P1593 因子和的更多相关文章

  1. 洛谷 P1593 因子和

    https://www.luogu.org/problemnew/show/P1593#sub 利用约数和定理:可以去看一下公式第13条 然后这个题目的话,要求$a^b$,那么我们首先可以先将a分解然 ...

  2. 洛谷 - P1593 - 因子和 - 费马小定理

    类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定 ...

  3. 洛谷 P1593 因子和 || Sumdiv POJ - 1845

    以下弃用 这是一道一样的题(poj1845)的数据 没错,所有宣称直接用逆元/快速幂+费马小定理可做的,都会被hack掉(包括大量题解及AC代码) 什么原因呢?只是因为此题的模数太小了...虽然990 ...

  4. 洛谷 P1593 因子和 题解

    题面 这道题在数学方面没什么难度: 对于每一个正整数n: 质因数分解后可以写成n=a1^k1a2^k2……*ai^ki 所求的数的因数和f(n)就等于f(n)=(1+a1+a1^2+……+a1^k1) ...

  5. 洛谷P1244 青蛙过河 DP/思路

    又是一道奇奇怪怪的DP(其实是思路题). 原文戳>>https://www.luogu.org/problem/show?pid=1244<< 这题的意思给的挺模糊,需要一定的 ...

  6. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  7. 洛谷P3938 斐波那契

    题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...

  8. 【洛谷2617_BZOJ1901】Dynamic Rankings(树套树)

    题目: 洛谷 2617 BZOJ 1901 是权限题,\(n=10^4\) ,内存 128 MB :洛谷 2617 \(n=10^5\) ,内存 1024 MB ,数据比较坑. 分析: 蒟蒻初学树套树 ...

  9. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

随机推荐

  1. 进程与fork()、wait()、exec函数组

    进程与fork().wait().exec函数组 内容简介:本文将引入进程的基本概念:着重学习exec函数组.fork().wait()的用法:最后,我们将基于以上知识编写Linux shell作为练 ...

  2. python 进程复习

    import os import time ret = os.fork() # 创建子线程 if ret ==0: # 子进程中返回值为0,父进程>0 while True: print('.. ...

  3. 常用的 html 标签及注意事项

    <a> 标签 用法:用于定义超链接 清除浏览器默认样式: a { text-decoration: none;/* 去除下划线 */ color: #333;/* 改变链接颜色 */ } ...

  4. 使用 PHP 来做 Vue.js 的 SSR 服务端渲染

    对于客户端应用来说,服务端渲染是一个热门话题.然而不幸的是,这并不是一件容易的事,尤其是对于不用 Node.js 环境开发的人来说. 我发布了两个库让 PHP 从服务端渲染成为可能.spatie/se ...

  5. JAVA_SE基础——57.有了包之后类与类之间的访问使用import语句

    代码1访问代码2 代码1: class Demo3 { public static void main(String[] args) { Demo4 a = new Demo4(); a.print( ...

  6. RocketMQ(二):RPC通讯

    匠心零度 转载请注明原创出处,谢谢! RocketMQ网络部署图 NameServer:在系统中是做命名服务,更新和发现 broker服务. Broker-Master:broker 消息主机服务器. ...

  7. nodeJS基于smtp发邮件

    邮件的协议smtp是tcp/ip族中的一个协议,所以我们这次考虑使用net模块来发送邮件. const net = require('net') const assert = require('ass ...

  8. C# 使用 GDI+ 给图片添加文字,并使文字自适应矩形区域

    需求 需求是要做一个编辑文字的页面.用户在网页端写文字,文字区域是个矩形框,用户可以通过下方的拖动条调节文字大小. 如下图: 提交数据的时候前端传文字区域的左上角和右下角定位给后台.因为前端的字体大小 ...

  9. WPF 自定义Calendar样式(日历样式,周六周日红色显示)

    一.WPF日历控件基本样式 通过Blend获取到Calendar需要设置的三个样式CalendarStyle.CalendarButtonStyle.CalendarDayButtonStyle.Ca ...

  10. js new到底干了什么,new的意义是什么?

    学过JS的都知道 创建对象可以这样 var obj=new Object(); var obj=new Function(); 用内置的函数对象来构造对象 还可以这样自定义函数 function te ...