一道很好的圆方树入门题

感谢PinkRabbit巨佬的博客,讲的太好啦

首先是构建圆方树的代码,也比较好想好记

void tarjan(int u) {
dfn[u] = low[u] = ++dfn_clk; //初始化dfn和low数组
stk[++tp] = u; //把u加入栈中
for(int i = head[u]; i; i = e[i].next) {
int v = e[i].to;
if(!dfn[v]) { //v还未访问
tarjan(v); //先访问
low[u] = min(low[u], low[v]); //然后更新u的信息
if(low[v] == dfn[u]) { //找到一个以u为顶点的点双
++tot; //新建一个方点
for(int x = 0; x != v; --tp) { //把栈中在v及其之前的点都向方点连边并弹出
x = stk[tp];
G[tot].push_back(x);
G[x].push_back(tot);
}
G[tot].push_back(u); //注意不能把u弹出
G[u].push_back(tot); //因为u可能在多个点双中
}
}
else low[u] = min(low[u], dfn[v]);
}
}

注释写的还算详细\(QWQ\)

考虑这一题怎么做

题目大意

给你一张无向图,让你求这样的有序三元组\(<s,c,f>\)的个数,使得存在一条简单路径依次经过\(s,c,f\)

Solution

首先我们把圆方树建出来

考虑如下性质,对于在同一个点双中的两点\(s,t\),还有一个给定的也在这个点双中的点\(c\),一定存在一条简单路径依次经过\(s,c,t\),貌似挺显然的

在这题中,假设钦定了路径的两个端点\(s,t\),由上面的性质,那么能作为中间点的点集就是在圆方树上\(s\)到\(t\)的路径所经过的方点所代表的点双的并集(不包括\(s,t\))。这句话是本题的突破点,虽然有点拗口

然后是一个很套路的处理,把方点的点权设为点双的大小,圆点的点权设为\(-1\),这样的话上面要求的值就转化为\(s\)到\(t\)路径上的点权之和了

直接枚举\(s\)和\(t\)显然不行,考虑枚举每个点对答案的贡献,即

\[w[u]=val[u]*经过u的路径条数
\]

然后用树形\(dp\)就可以\(O(n)\)的统计答案了

另外,注意图不一定联通,所以需要单独统计每个联通块中的答案

#include <bits/stdc++.h>

using namespace std;

#define N 500000
#define M 200000 int n, m, tot;
int head[N+5], eid;
int dfn[N+5], low[N+5], dfn_clk;
int stk[N+5], tp, val[N+M+5], vis[N+M+5], cnt[N+M+5], sz[N+M+5], S;
long long ans;
vector<int> G[N+5]; struct Edge {
int next, to;
}e[2*M+5]; void addEdge(int u, int v) {
e[++eid].next = head[u];
e[eid].to = v;
head[u] = eid;
} void tarjan(int u) {
dfn[u] = low[u] = ++dfn_clk; //初始化dfn和low数组
stk[++tp] = u; //把u加入栈中
for(int i = head[u]; i; i = e[i].next) {
int v = e[i].to;
if(!dfn[v]) { //v还未访问
tarjan(v); //先访问
low[u] = min(low[u], low[v]); //然后更新u的信息
if(low[v] == dfn[u]) { //找到一个以u为顶点的点双
++tot; //新建一个方点
for(int x = 0; x != v; --tp) { //把栈中在u之前的点都向方点连边并弹出
x = stk[tp];
G[tot].push_back(x);
G[x].push_back(tot);
}
G[tot].push_back(u); //注意不能把u弹出
G[u].push_back(tot); //因为u可能在多个点双中
}
}
else low[u] = min(low[u], dfn[v]);
}
} void getcnt(int u, int fa) {
if(u <= n) cnt[u] = 1;
for(int i = 0; i < G[u].size(); ++i) {
int v = G[u][i];
if(v == fa) continue;
getcnt(v, u);
cnt[u] += cnt[v];
}
} void dp(int u, int fa) {
vis[u] = 1;
if(u <= n) sz[u] = 1;
long long sum = 1LL*cnt[u]*(S-cnt[u]);
for(int i = 0; i < G[u].size(); ++i) {
int v = G[u][i];
if(v == fa) continue;
dp(v, u);
sum += 1LL*sz[u]*sz[v];
sz[u] += sz[v];
}
ans += 1LL*val[u]*sum;
} int main() {
scanf("%d%d", &n, &m);
tot = n;
for(int i = 1, x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
addEdge(x, y), addEdge(y, x);
}
for(int i = 1; i <= n; ++i)
if(!dfn[i]) tarjan(i);
for(int i = 1; i <= n; ++i) val[i] = -1;
for(int i = n+1; i <= tot; ++i) val[i] = G[i].size();
for(int i = 1; i <= tot; ++i)
if(!vis[i]) {
getcnt(i, 0);
S = cnt[i];
dp(i, 0);
}
printf("%lld\n", ans*2);
return 0;
}

洛谷P4630 铁人两项--圆方树的更多相关文章

  1. [APIO2018] Duathlon 铁人两项 圆方树,DP

    [APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...

  2. [APIO2018]铁人两项 --- 圆方树

     [APIO2018] 铁人两项 题目大意: 给定一张图,问有多少三元组(a,b,c)(a,b,c 互不相等)满足存在一条点不重复的以a为起点,经过b,终点为c的路径 如果你不会圆方树 ------- ...

  3. [APIO2018]铁人两项 [圆方树模板]

    把这个图缩成圆方树,把方点的权值设成-1,圆点的权值设成点双的size,算 经过这个点的路径的数量*这个点的点权 的和即是答案. #include <iostream> #include ...

  4. [APIO2018]铁人两项——圆方树+树形DP

    题目链接: [APIO2018]铁人两项 对于点双连通分量有一个性质:在同一个点双里的三个点$a,b,c$,一定存在一条从$a$到$c$的路径经过$b$且经过的点只被经过一次. 那么我们建出原图的圆方 ...

  5. 【Luogu4630】【APIO2018】 Duathlon 铁人两项 (圆方树)

    Description ​ 给你一张\(~n~\)个点\(~m~\)条边的无向图,求有多少个三元组\(~(x, ~y, ~z)~\)满足存在一条从\(~x~\)到\(~z~\)并且经过\(~y~\)的 ...

  6. LOJ 2587 「APIO2018」铁人两项——圆方树

    题目:https://loj.ac/problem/2587 先写了 47 分暴力. 对于 n<=50 的部分, n3 枚举三个点,把图的圆方树建出来,合法条件是 c 是 s -> f 路 ...

  7. loj2587 「APIO2018」铁人两项[圆方树+树形DP]

    主要卡在一个结论上..关于点双有一个常用结论,也经常作为在圆方树/简单路径上的良好性质,对于任意点双内互不相同的三点$s,c,t$,都存在简单路径$s\to c\to t$,证明不会.可以参见clz博 ...

  8. [BZOJ5463][APIO2018]铁人两项(圆方树DP)

    题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了 ...

  9. 洛谷4630APIO2018铁人两项(圆方树+dp)

    QWQ神仙题啊(据说是今年第一次出现圆方树的地方) 首先根据题目,我们就是求对于每一个路径\((s,t)\)他的贡献就是两个点之间的点数,但是图上问题我并没有办法很好的解决... 这时候考虑圆方树,我 ...

随机推荐

  1. Java 处理 multipart/mixed 请求

    一.multipart/mixed 请求   multipart/mixed 和 multipart/form-date 都是多文件上传的格式.区别在于,multipart/form-data 是一种 ...

  2. APP网站安全漏洞检测服务的详细介绍

    01)概述: 关于APP漏洞检测,分为两个层面的安全检测,包括手机应用层,以及APP代码层,与网站的漏洞检测基本上差不多,目前越来越多的手机应用都存在着漏洞,关于如何对APP进行漏洞检测,我们详细的介 ...

  3. 从0到1搭建AI中台

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | 宜信技术学院 作者 | 井玉欣 导读:随着“数据中台”的提出和成功实践,各企业纷纷在“大中台 ...

  4. 基于geotools的(两个)SHP要素变化提取方法预研

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1. 背景 我们用遥感的手段进行卫星特征提取.多幅影像间的特征变化提取的 ...

  5. 如何正确的升级node版本【已解决】

    博主亲身经历可以用以下几步解决node版本问题噢,解决了记得留个赞哈! 1 . 首先要安装n这个版本控制器噢 npm i -g n 如果这一步成功了就接着走哈,但是博主试了,大多数是安装不成功的,可以 ...

  6. Hive参数

    1.hive当中的参数.变量都是以命名空间开头 2.通过${}方式进行引用,其中system.env下的变量必须以前缀开头 3.hive参数设置方式 1.修改配置文件${HIVE_HOME}/conf ...

  7. kali权限提升之本地提权

    kali权限提升之本地提权 系统账号之间权限隔离 操作系统的安全基础 用户空间 内核空间 系统账号: 用户账号登陆时候获取权限令牌 服务账号无需用户登录已在后台启动服务 windows用户全权限划分: ...

  8. Django Template(模板)

    一.模板组成 组成:HTML代码 + 逻辑控制代码 二.逻辑控制代码的组成 1.变量 语法格式 : {{ name }} # 使用双大括号来引用变量 1.Template和Context对象(不推荐使 ...

  9. RabbitMQ使用时注意的一些问题

     一.前言       上篇RabbitMQ的博文居然上了推荐,效果很不错,接下来我们就来聊聊我们RabbitMQ的方案,先谈方案,代码等等后面补上,感觉不错给我点点关注,点点

  10. VS2019 离线安装方法详解

    本文详细介绍了 VS2019 离线安装的相关步骤,以桌面开发为主下载 C++桌面开发..NET 桌面开发相关的工作负载.MFC 可选组件及帮助查看器. 工作负载(Workload) 离线安装需要先根据 ...