bzoj3462DZY Loves Math II

数据范围:$$2 \leq S \leq 2 * 10^6$$
$$1 \leq n \leq 10^{18}$$
$$ 1 \leq q \leq 10^5$$
数学+dp
题解写一年系列...
观察一下原题,
(1)因为每个$p_i$必须出现,所以我们可以把$n$减去$\sum p_i$来转化为每个$p_i$可以不出现
(2)根据$S$的范围,我们发现$k$不超过$20$(实际上不会超过$7$)
(3)$S$中不会含有完全平方因子
(4)事实上,我们拆出来的式子一定是形如$$\sum p_i * c_i=n$$
每个$p_i$都是$S$的因数 所以$p_i * c_i$得到的结果一定是$X \cdot S + Y \cdot c_i$
把$c_i$分成$a_i=c_i/(S/p_i),b_i=c_i mod (S/p_i)$
枚举$m$,$p_1*b_1+p_2*b_2+...+p_k*b_k=n-m*S$
这个可以用背包的方式预处理,剩下的可用插板法得到
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const LL yyc = 1e9+;
const LL maxn = 2e6+;
LL dp[][maxn << ];
LL orz[],cnt;
LL s,n,q;
inline LL ksm(LL a,LL b)
{
LL res=;
while(b)
{
if(b&)(res*=a)%=yyc;
(a*=a)%=yyc;
b>>=;
}
return res;
}
inline LL C(LL n,LL m)
{
n++,m--;n=n+m-;
LL res=;
for(LL i=n;i>=n-m+;i--)
res=(res*(i%yyc))%yyc;
for(LL i=;i<=m;i++)
res=res*ksm(i,yyc-)%yyc;
return res;
}
LL solve()
{
LL now=,pre=;
memset(dp[now],,sizeof(dp[now]));
dp[now][]=;
for(LL i=;i<=cnt;i++)
{
now^=,pre^=;memset(dp[now],,sizeof(dp[now]));
LL bou=s/orz[i]-;
for(LL j=;j<orz[i];j++)
{
LL sum=;
for(LL k=;k <= (s*cnt-j)/orz[i];k++)
{
sum+=dp[pre][k*orz[i]+j];sum=sum%yyc;
if(k >= bou+)sum-=dp[pre][(k-bou-)*orz[i]+j];
dp[now][k*orz[i]+j]=sum;
}
}
}
return now;
}
int main()
{
scanf("%lld%lld",&s,&q);LL x=s;
LL len=sqrt(s);
for(LL i=; i<=len;i++)
{
if(s%i == ) s/=i,orz[++cnt]=i;
if(s%i == )
{
while(q--)puts("");
return ;
//huaji
}
}
if(s>)orz[++cnt]=s;s=x;
LL now=solve();
while(q--)
{
LL res=;
scanf("%lld",&n);
for(LL i=;i<=cnt;i++)n-=orz[i];
if(n < )
{
puts("");
continue;
}
LL m=n/s,k=n-m*s;
for(LL i=;i<=min(m,cnt);i++)
res=(res+dp[now][i*s+k]*C(cnt+m-i-cnt,cnt%yyc)%yyc)%yyc;
printf("%lld\n",(res+yyc)%yyc);
}
}
丑陋的卡时代码
bzoj3462DZY Loves Math II的更多相关文章
- bzoj 3462: DZY Loves Math II
3462: DZY Loves Math II Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 211 Solved: 103[Submit][Sta ...
- [bzoj3462]DZY Loves Math II (美妙数学+背包dp)
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inp ...
- BZOJ3462 DZY Loves Math II(动态规划+组合数学)
容易发现这是一个有各种玄妙性质的完全背包计数. 对于每个质数,将其选取个数写成ax+b的形式,其中x=S/pi,0<b<x.那么可以枚举b的部分提供了多少贡献,多重背包计算,a的部分直接组 ...
- BZOJ 3462 DZY Loves Math II ——动态规划 组合数
好题. 首先发现$p$是互质的数. 然后我们要求$\sum_{i=1}^{k} pi*xi=n$的方案数. 然后由于$p$不相同,可以而$S$比较小,都是$S$的质因数 可以考虑围绕$S$进行动态规划 ...
- BZOJ3462 DZY Loves Math II 【多重背包 + 组合数】
题目 输入格式 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. 输出格式 输出共 q 行,分别为每个询问的答案. 输入样例 30 3 9 29 1000000 ...
- bzoj3462: DZY Loves Math II
状态很差脑子不清醒了,柿子一直在推错.... ... 不难发现这个题实际上是一个完全背包 问题在于n太大了,相应的有质数的数量不会超过7个 假设要求sigema(1~plen)i pi*ci=n 的方 ...
- DZY Loves Math II:多重背包dp+组合数
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量.接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inpu ...
- DZY Loves Math II
简要题面 对于正整数 \(S, n\),求满足如下条件的素数数列 \((p_1,p_2,\cdots,p_k)\)(\(k\) 为任意正整数) 的个数: \(p_1\le p_2\le\cdots\l ...
- [BZOJ] DZY Loves Math 系列 I && II
为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\ ...
随机推荐
- Web前端开发--JS技术大梳理
什么是JS JavaScript是一种直译式脚本语言,是一种动态类型.弱类型.基于原型的语言,内置支持类型.它的解释器被称为JavaScript引擎,为浏览器的一部分,广泛用于客户端的脚本语 ...
- C# 请求Web Api 接口,返回的json数据直接反序列化为实体类
须要的引用的dll类: Newtonsoft.Json.dll.System.Net.Http.dll.System.Net.Http.Formatting.dll Web Api接口为GET形式: ...
- 【甘道夫】Ubuntu14 server + Hadoop2.2.0环境下Sqoop1.99.3部署记录
第一步.下载.解压.配置环境变量: 官网下载sqoop1.99.3 http://mirrors.cnnic.cn/apache/sqoop/1.99.3/ 将sqoop解压到目标文件夹,我的是 /h ...
- Spring Boot 从入门到实战汇总
之前写过几篇spring boot入门到实战的博文,因为某些原因没能继续. 框架更新迭代很快,之前还是基于1.x,现在2.x都出来很久了.还是希望能从基于该框架项目开发的整体有一个比较系统的梳理,于是 ...
- poj 1163 The Triangle 记忆化搜索
The Triangle Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 44998 Accepted: 27175 De ...
- 怎样替换jar包的指定文件
在做(或修改别人的)项目的时候,可能遇到要修改调用的的jar包内的类属性或方法的问题.在eclipse或是其他的IDE中是无法直接修改的,所以需要一个解压jar-->修改文件-->编译-- ...
- IOS-4-面试题1:黑马程序猿IOS面试题大全
一.多线程网络 1. 多线程的底层实现? 1> 首先搞清楚什么是线程.什么是多线程 2> Mach是第一个以多线程方式处理任务的系统.因此多线程的底层实现机制是基于Mach的线程 3> ...
- git分支处理
查看分支:git branch 创建分支:git branch <name> 切换分支:git checkout <name> 创建+切换分支:git checkout -b ...
- 制作FAT12软盘以查看软盘的根目录条目+文件属性+文件内容
[-1]Before for specific info , please visit http://wiki.osdev.org/Loopback_Device [0]我们先上干货,看到效果后,我们 ...
- 使用python实现二分法查找
最近开始学习mit的python课程,其中手工实现的一个关于二分法查找的练习代码个人感觉比较有参考价值,贴上来分享交流一下. 主要功能是在1-100中自己猜测一个数值,随后系统产生数值看是否符合猜测, ...