2005: [Noi2010]能量采集

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】

5 4

【样例输入2】

3 4

Sample Output

【样例输出1】

36

【样例输出2】

20

【数据规模和约定】

对于10%的数据:1 ≤ n, m ≤ 10;

对于50%的数据:1 ≤ n, m ≤ 100;

对于80%的数据:1 ≤ n, m ≤ 1000;

对于90%的数据:1 ≤ n, m ≤ 10,000;

对于100%的数据:1 ≤ n, m ≤ 100,000。

HINT

分析:

平面直角坐标系上的线段(且两端点为整点),其包含的整点(不包括两端点)数为gcd(|x1-x2|,|y1-y2|)-1,其中当重合时要特判。

对于这题很显然是求∑[2*(gcd(x,y)-1)+1](1<=x<=n 1<=y<=m),也就是所有点(横纵坐标gcd-1)*2+1的和

f[d]表示gcd为d的(x,y)个数,这个直接求是不行的,

可以设g[d]表示公因数为d的(x,y)个数,g[d]=[n/d]*[m/d],把他们加起来

但是这些数对中有一些的最大公因数为2d,3d,4d,我们要把他们减掉

f[d]=g[d]-Σ(f[d*i])  (2<=i<=[min(n,m)/d]);

倒着做即可

代码:

program dfsg;
var
f:array[..]of int64;
n,i,m,j:longint; x,s:int64;
function min(x,y:int64):int64;
begin
if x<y then min:=x else min:=y;
end;
begin
readln(n,m);
for i:=min(n,m) downto do
begin x:=i;
f[i]:=(n div x)*(m div x);
for j:= to n div i do dec(f[i],f[i*j]);
inc(s,f[i]*(*x-));
end;
writeln(s);
end.

BZOJ 2015:[Noi2010]能量采集(数论+容斥原理)的更多相关文章

  1. BZOJ 2005: [Noi2010]能量采集( 数论 + 容斥原理 )

    一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 <= x <= ...

  2. BZOJ 2005: [Noi2010]能量采集

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 3312  Solved: 1971[Submit][Statu ...

  3. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  4. bzoj 2005: [Noi2010]能量采集 筛法||欧拉||莫比乌斯

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MB[Submit][Status][Discuss] Description 栋栋 ...

  5. 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)

    能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...

  6. 【刷题】BZOJ 2005 [Noi2010]能量采集

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  7. 【BZOJ 2005】【NOI 2010】能量采集 数论+容斥原理

    这题设$f(i)$为$gcd(i,j)=x$的个数,根据容斥原理,我们只需减掉$f(i×2),f(i×3)\cdots$即可 那么这道题:$$ans=\sum_{i=1}^n(f(i)×((i-1)× ...

  8. BZOJ 2005: [Noi2010]能量采集(容斥+数论)

    传送门 解题思路 首先题目要求的其实就是\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m [(gcd(i,j)-1)*2+1)]\),然后变形可得\(-n*m+2\s ...

  9. BZOJ 2005: [Noi2010]能量采集(莫比乌斯反演)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题意:   思路: 首先要知道一点是,某个坐标(x,y)与(0,0)之间的整数点的个数为gcd ...

  10. BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]

    题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...

随机推荐

  1. 【洛谷3648】[APIO2014] 序列分割(斜率优化DP)

    点此看题面 大致题意: 你可以对一个序列进行\(k\)次分割,每次得分为两个块元素和的乘积,求总得分的最大值. 区间\(DPor\)斜率优化\(DP\) 这题目第一眼看上去感觉很明显是区间\(DP\) ...

  2. 【BZOJ1029】[JSOI2007] 建筑抢修(堆优化贪心)

    点此看题面 大致题意: 有N个受到严重损伤的建筑,对于每个建筑,修好它需要\(T1\)秒,且必须在\(T2\)秒之前修完(\(T1\)与\(T2\)不是固定值),问你最多能修好几个建筑. 题解 一看到 ...

  3. 增强的格式化字符串format函数

    http://blog.csdn.net/handsomekang/article/details/9183303 自python2.6开始,新增了一种格式化字符串的函数str.format(),可谓 ...

  4. bootstrap3 文档随看

    唉 昨天看的是2,早知道就只可以看3啦,虽然整体不变,但是小改小闹的还是很多啦.产品上线是需要升级的,但是像这么改会很烦哎,有些样式名字修改,用法修改,功能修改,那让用惯了2的人还得把之前记忆清除了然 ...

  5. BZOJ3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(dp)

    题意     约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡牛之间至少要有K( ...

  6. Vue -computed传参数

    vue 中computed想传递参数怎么办? 闭包在这里起到的重要的作用 <input v-model="newItem(key,val)" type="text& ...

  7. 【Ecshop】修改处理用户购物车的行为

    Ecshop v2.7.3的购物车处理方面在现在看来有比较反用户体验的设计: 用户未登录时加入购物车的商品,在用户登录后会被清空而不是加入到登录用户的购物车中: 用户登录后加入购物车的商品,在退出后会 ...

  8. 科学计算库Numpy——排序

    矩阵按维度排序 使用np.sort()进行排序. 排序索引值 使用np.argsort()排序,返回排序后的索引值. 备注:array1[1,2]=1.2,array1[1,0]=5.6,array1 ...

  9. UML类图关系模式(C++代码说明)

    在UML类图中的关系模式主要有以下几种: 泛化(Generalization),  实现(Realization), 关联(Association), 聚合(Aggregation), 依赖(Depe ...

  10. (原创)task和function语法的使用讨论(Verilog,CPLD/FPGA)

    1. Abstract function和task语句的功能有很多的相似之处,在需要有多个相同的电路生成时,可以考虑使用它们来实现.因为个人使用它们比较少,所以对它们没有进行更深的了解,现在时间比较充 ...