[bzoj1017][JSOI2008]魔兽地图 DotR (Tree DP)【有待优化】
Description
DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Ancients) Allstars。DotR里面的英雄只有一个属性——力量。他们需要购买装备来提升自己的力量值,每件装备都可以使佩戴它的英雄的力量值提高固定的点 数,所以英雄的力量值等于它购买的所有装备的力量值之和。装备分为基本装备和高级装备两种。基本装备可以直接从商店里面用金币购买,而高级装备需要用基本 装备或者较低级的高级装备来合成,合成不需要附加的金币。装备的合成路线可以用一棵树来表示。比如,Sange and Yasha的合成需要Sange, Yasha和Sange and Yasha Recipe Scroll三样物品。其中Sange又要用Ogre Axe, Belt of Giant Strength 和 Sange Recipe Scroll合成。每件基本装备都有数量限制,这限制了你不能无限制地合成某些性价比很高的装备。现在,英雄Spectre有M个金币,他想用这些钱购买 装备使自己的力量值尽量高。你能帮帮他吗?他会教你魔法Haunt(幽灵附体)作为回报的。
Input
输 入文件第一行包含两个整数,N (1 <= n <= 51) 和 m (0 <= m <= 2,000)。分别表示装备的种类数和金币数。装备用1到N的整数编号。接下来的N行,按照装备1到装备n的顺序,每行描述一种装备。每一行的第一个正整 数表示这个装备贡献的力量值。接下来的非空字符表示这种装备是基本装备还是高级装备,A表示高级装备,B表示基本装备。如果是基本装备,紧接着的两个正整 数分别表示它的单价(单位为金币)和数量限制(不超过100)。如果是高级装备,后面紧跟着一个正整数C,表示这个高级装备需要C种低级装备。后面的2C 个数,依次描述某个低级装备的种类和需要的个数。
Output
第一行包含一个整数S,表示最多可以提升多少点力量值。
Sample Input
5 A 3 6 1 9 2 10 1
1 B 5 3
1 B 4 3
1 B 2 3
8 A 3 2 1 3 1 7 1
1 B 5 3
5 B 3 3
15 A 3 1 1 5 1 4 1
1 B 3 5
1 B 4 3
Sample Output
分析
TAT这是我写过的最麻烦的一道树形依赖背包!(虽然这也是我第一次写= =)
不过说实话,这题的“思路”还是相当简单的……大概就是先dfs一下整棵进化树,得到每个节点的以下信息:这棵子树上最多的花费(maxcost),根节点最多能买到几个(maxcnt)(可以由它依赖的节点的maxcnt和需要依赖节点的个数求得),买一个此装备的价格,和这个装备产生的力量值。对于每个节点,设f(i,j)表示提供给父节点i个当前节点用于合成,且在这棵子树上恰好花费j金币时可得的最大力量值(父节点的力量值不算),然后每个节点与它的右兄弟和左儿子分别合并答案即可。
具体的合并算法还是参考了巨神VFleaKing的题解……

, c = getchar();
+ c - , maxm = , maxc = , INF = , maxcost = ;
, maxcnt = ;
;
;
;i <= N;++i){
);
;
)++i, NotRoot >>= ;
;i <= limS;++i){
;
;j <= min(limf, i);++j);i <= limS;++i)S[i] = tmp[i];
;i <= maxcnt;++i)
AddTo(S[i], it->f[i*it->cnt], maxcost, it->maxcost);
;j <= maxcost;++j)
f[maxcnt][j] = max(S[maxcnt][j], f[maxcnt][j-]);
}
;i >= ;--i);j <= maxcost;++j){
f[i][j] = max(f[i][j-], S[i][j]);
][j-pri] + val > f[i][j])
f[i][j] = f[i+][j-pri] + val;
}
}
freopen( freopen( freopen( init();
Root->dp();
printf(][Root->maxcost]);
cout << endl << ( ;
}
树形依赖背包
[bzoj1017][JSOI2008]魔兽地图 DotR (Tree DP)【有待优化】的更多相关文章
- [BZOJ1017][JSOI2008]魔兽地图DotR 树形dp
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2597 Solved: 1010[Submit][ ...
- 【BZOJ-1017】魔兽地图DotR 树形DP + 背包
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1566 Solved: 705[Submit][S ...
- BZOJ1017: [JSOI2008]魔兽地图DotR【树形DP】【玄学】
Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...
- BZOJ1017 [JSOI2008]魔兽地图DotR 【树形dp + 背包dp】
题目链接 BZOJ1017 题解 orz hzwer 树形dp神题 设\(f[i][j][k]\)表示\(i\)号物品恰好花费\(k\)金币,并将\(j\)个物品贡献给父亲的合成时的最大收益 计算\( ...
- bzoj1017 [JSOI2008]魔兽地图DotR——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1017 好难想的状态啊!f[i][j][k]表示i号物品有j个向上贡献,一共花了k钱的最大力量 ...
- BZOJ1017: [JSOI2008]魔兽地图DotR
传送门 设$f[i][j][k]$表示对于第$i$个点,向父节点贡献$j$个已合成的装备,花费了$k$的代价,最多获得的力量值. 单纯的$f[i][j][k]$是很难转移的,主要原因是无法维护和其他儿 ...
- 【bzoj1017】[JSOI2008]魔兽地图DotR
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1658 Solved: 755[Submit][S ...
- BZOJ [JSOI2008]魔兽地图DotR
1017: [JSOI2008]魔兽地图DotR Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1243 Solved: 532[Submit][S ...
- 1017: [JSOI2008]魔兽地图DotR - BZOJ
Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...
随机推荐
- scrapy爬虫框架介绍
一 介绍 Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速.简单.可扩展的方式从网站中提取所需的数据.但目前Scrapy的用途十分广泛,可 ...
- 大数加法(SDUT“斐波那契”串)4335
题目链接:https://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Contest/contestproblem/cid/2697/pid/4335.ht ...
- Linux系统中提示/usr/bin/ld: cannot find -lxxx错误的通用解决方法
在linux环境编译应用程式或lib的source code时常常会出现如下的错误讯息: 代码如下: /usr/bin/ld: cannot find -lxxx 这些讯息会随着编译不同类型的sour ...
- 用ELK搭建简单的日志收集分析系统【转】
缘起 在微服务开发过程中,一般都会利用多台服务器做分布式部署,如何能够把分散在各个服务器中的日志归集起来做分析处理,是一个微服务服务需要考虑的一个因素. 搭建一个日志系统 搭建一个日志系统需要考虑一下 ...
- 浅谈Linux系统中如何查看进程 ——ps,pstree,top,w,全解
进程是一个其中运行着一个或多个线程的地址空间和这些线程所需要的系统资源.一般来说,Linux系统会在进程之间共享程序代码和系统函数库,所以在任何时刻内存中都只有代码的一份拷贝. 1,ps命令 作用:p ...
- Educational Codeforces Round 25 D - Suitable Replacement(贪心)
题目大意:给你字符串s,和t,字符串s中的'?'可以用字符串t中的字符代替,要求使得最后得到的字符串s(可以将s中的字符位置两两交换,任意位置任意次数)中含有的子串t最多. 解题思路: 因为知道s中的 ...
- csu 1551(线段树+DP)
1551: Longest Increasing Subsequence Again Time Limit: 2 Sec Memory Limit: 256 MBSubmit: 267 Solve ...
- 常用对称加密算法(DES/AES)类(PHP)
看注释,啥也不说了,欢迎各种跨平台测试! /** * 常用对称加密算法类 * 支持密钥:64/128/256 bit(字节长度8/16/32) * 支持算法:DES/AES(根据密钥长度自动匹配使用: ...
- go当中寄生于变量的方法
这个东东,好像其它语言很少见呢. 印象中,ruby是可以这样的. package main import ( "fmt" ) type user struct { name str ...
- JS模块化规范AMD之RequireJS
1.基本操作 加载 JavaScript 文件(入口文件) RequireJS以一个相对于baseUrl的地址来加载所有的代码 <script data-main="scripts/m ...