Latent Semantic Analysis(LSA/ LSI)原理简介
LSA的工作原理: How Latent Semantic Analysis Works
LSA被广泛用于文献检索,文本分类,垃圾邮件过滤,语言识别,模式检索以及文章评估自动化等场景。
LSA其中一个目的是解决如通过搜索词/关键词(search words)定位出相关文章。如何通过对比单词来定位文章是一个难点,因为我们正在要做的是对比单词背后的语义。潜在语义分析的基本原理是将文章和单词懂映射到语义空间( “concept” space )上,并在该空间进行对比分析。
当单词-标题(或文章)矩阵创建完成,我们将使用强大的SVD算法进行矩阵分析。关于SVD的详细介绍可以阅读 “Singular Value Decomposition Tutorial”。
SVD的强大在于,其通过强调强的相关关系并过滤掉噪声来实现矩阵降维(it finds a reduced dimensional representation of our matrix that emphasizes the strongest relationships and throws away the noise)。换句话说,SVD使用尽可能少的信息来对原矩阵进行尽可能好的重构(这里的好应该是指重构矩阵失真少,且噪声少)。其实现手段是减低噪声,同时增强强模式和趋势(o do this, it throws out noise, which does not help, and emphasizes strong patterns and trends, which do help)。在LSA中使用SVD时为了确定单词-标题(或文章)矩阵有效维度数或包含“语义”数。经过压缩后,之后少量用于有用的维度或语义模式被留下,大量噪声将被过滤掉。这些噪声是由于作者的随机选择找出。
SVD算法的实现有点复杂,幸运的是python有现成的的函数完成该工作。通过加装python的SVD函数,我们将矩阵分解成3个矩阵。矩阵UU提供了每个单词在语义空间的坐标。而VTVT提供了每篇文章在语义空间的坐标。奇异值矩阵SS告诉我们有词-标题(或文章)矩阵包含了多少语义或语义空间的有效维度是多少。
def calc(self):
self.U, self.S, self.Vt = svd(self.A)
参考文档1:https://www.cnblogs.com/kemaswill/archive/2013/04/17/3022100.html
参考文档2:https://en.wikipedia.org/wiki/Latent_semantic_analysis
参考文档3:https://blog.csdn.net/zhzhji440/article/details/47193731(重要)
1. 总而言之,在基于单词的检索方法中,同义词会降低检索算法的召回率(Recall),而多义词的存在会降低检索系统的准确率(Precision)。
2. Latent Semantic Analysis (Latent Semantic Indexing)
我们希望找到一种模型,能够捕获到单词之间的相关性。如果两个单词之间有很强的相关性,那么当一个单词出现时,往往意味着另一个单词也应该出现(同义词);反之,如果查询语句或者文档中的某个单词和其他单词的相关性都不大,那么这个词很可能表示的是另外一个意思(比如在讨论互联网的文章中,Apple更可能指的是Apple公司,而不是水果) 。
LSA(LSI)使用SVD来对单词-文档矩阵进行分解。SVD可以看作是从单词-文档矩阵中发现不相关的索引变量(因子),将原来的数据映射到语义空间内。在单词-文档矩阵中不相似的两个文档,可能在语义空间内比较相似。
SVD,亦即奇异值分解,是对矩阵进行分解的一种方法,一个t*d维的矩阵(单词-文档矩阵)X,可以分解为T*S*DT,其中T为t*m维矩阵,T中的每一列称为左奇异向量(left singular bector),S为m*m维对角矩阵,每个值称为奇异值(singular value),D为d*m维矩阵,D中的每一列称为右奇异向量。在对单词文档矩阵X做SVD分解之后,我们只保存S中最大的K个奇异值,以及T和D中对应的K个奇异向量,K个奇异值构成新的对角矩阵S’,K个左奇异向量和右奇异向量构成新的矩阵T’和D’:X’=T’*S’*D’T形成了一个新的t*d矩阵。
Latent Semantic Analysis(LSA/ LSI)原理简介的更多相关文章
- Latent Semantic Analysis (LSA) Tutorial 潜语义分析LSA介绍 一
Latent Semantic Analysis (LSA) Tutorial 译:http://www.puffinwarellc.com/index.php/news-and-articles/a ...
- 潜在语义分析Latent semantic analysis note(LSA)原理及代码
文章引用:http://blog.sina.com.cn/s/blog_62a9902f0101cjl3.html Latent Semantic Analysis (LSA)也被称为Latent S ...
- Latent semantic analysis note(LSA)
1 LSA Introduction LSA(latent semantic analysis)潜在语义分析,也被称为LSI(latent semantic index),是Scott Deerwes ...
- 主题模型之概率潜在语义分析(Probabilistic Latent Semantic Analysis)
上一篇总结了潜在语义分析(Latent Semantic Analysis, LSA),LSA主要使用了线性代数中奇异值分解的方法,但是并没有严格的概率推导,由于文本文档的维度往往很高,如果在主题聚类 ...
- 潜语义分析(Latent Semantic Analysis)
LSI(Latent semantic indexing, 潜语义索引)和LSA(Latent semantic analysis,潜语义分析)这两个名字其实是一回事.我们这里称为LSA. LSA源自 ...
- 主题模型之潜在语义分析(Latent Semantic Analysis)
主题模型(Topic Models)是一套试图在大量文档中发现潜在主题结构的机器学习模型,主题模型通过分析文本中的词来发现文档中的主题.主题之间的联系方式和主题的发展.通过主题模型可以使我们组织和总结 ...
- NLP —— 图模型(三)pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)模型
LSA(Latent semantic analysis,隐性语义分析).pLSA(Probabilistic latent semantic analysis,概率隐性语义分析)和 LDA(Late ...
- 海量数据挖掘MMDS week4: 推荐系统之隐语义模型latent semantic analysis
http://blog.csdn.net/pipisorry/article/details/49256457 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- 词向量---LSA(Latent Semantic Analysis)
举例: 矩阵分解之后,取前两维,k=2, 单词距离: 文档距离: 通过LSA分析之后计算文档间的余弦相似度,属于同一个类型文本之间的相似度很接近:在原始文档间计算相似度,效果不如LSA 当出现新的 ...
随机推荐
- Scrum立会报告+燃尽图(十一月十四日总第二十二次):分配β阶段任务
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2284 项目地址:https://git.coding.net/zhang ...
- 第六周的PSP
本周PSP: 本周进度条: 累积进度图:: 本周PSP饼状图:
- c# 读取blob数据
Stream stream = new MemoryStream(data); BinaryReader r = new BinaryReader(stream); int iRawImageWidt ...
- 第14章 Linux账号管理与ACL权限设置
Linux的账号与用户组 用户标识符:UID与GID 每一个文件都有一个所有者ID和用户组ID,当我们需要查看文件属性时,系统会根据/etc/passwd和/etc/group的内容,找到对应UID和 ...
- C++ auto_ptr智能指针的用法
C++中指针申请和释放内存通常采用的方式是new和delete.然而标准C++中还有一个强大的模版类就是auto_ptr,它可以在你不用的时候自动帮你释放内存.下面简单说一下用法. 用法一: std: ...
- C语言文法阅读与理解
<翻译单元>--><外部声明>--><函数定义>|<申报> <函数定义>--><声明说明符>-->< ...
- php对二维数组排序
function my_sort($arrays,$sort_key,$sort_order=SORT_DESC,$sort_type=SORT_NUMERIC ){ if(is_array($arr ...
- Matlab里面.M文件不能运行,预期的图像也显示不出来的一个原因
matlab中function函数的函数名与保存的文件名需要一样: 函数名是GAconstrain,文件名保存成GAconstrain.m,不要使用复制时候产生副本GAconstrain(1).m.
- [LeetCode] Climbing Sairs
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- POJ3378_Crazy Thairs
这个题目很有意思,也是一个很好的题目,涉及的知识点比较广,要求较高. 题目是这样的,给定你一个n个数的数列,问你有多少个长度为5的上升序列. 首先看到有50000,我们就知道肯定不会是DP.(但是不知 ...