注:本文是人工智能研究网的学习笔记

Pipeline:chaining(链接)estimators

Pipeline可以用于把多个estimators级联合成一个estimator。这么做的原因是考虑了数据处理过程的一系列前后相继的固定流程,比如:feature selection --> normalization --> classification。

在这里,Pipeline提供了两种服务:

  1. Convenience: 你只需要一次fit和predict就可以在数据集上训练一组estimators。
  2. Join parameter selection: 可以把grid search用在pipeline中所有的estimators的参数组合上面。

注意: pineline中除了最后一个之外的所有的estimators都必须是变换器(transformers)(也就是说必须要有一个transform方法)。最后一个estimator可以是任意的类型(transformer, classifier, regresser, etc)。

调用pipeline estimator的fit方法,就等于是轮流调用每一个estimator的fit函数一样,不断地变换输入,然后把结果传递到下一个阶段(step)的estimator。Pipeine对象实例拥有最后一个estimator的所有的方法。也就是说,如果最后一个estimator是一个分类器,则整个pipeline就可以作为一个分类器使用,如果最后一个eatimator是一个聚类器,则整个pipeline就可以作为一个聚类器使用。

Pipeline用法:

Pipeline对象使用(key, value)列表来构建,其中key是一个标识步骤的名称字符串,值是一个estimator对象:

from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.decomposition import PCA # 主成分分析 estimators = [('reduce_dim', PCA()), ('clf', SVC()) ]
pipe = Pipeline(estimators)
print(pipe)
print('-----------')
print(pipe.steps)
print('-----------')
print(pipe.named_steps['clf'])

Pipeline中estimators的参数通过__语法来获取

pipe.set_params(clf__C=10)

上面的方式在网格搜索中尤其好用

from sklearn.model_selection import GridSearchCV
params = dict(reduce_dim__n_components=[2, 5, 10],
clf__C=[0.1, 10, 100])
grid_search = GridSearchCV(pipe, param_grid=params)

单个的阶段(Step)可以使用参数替换,而且非最后阶段(non-final steps)还可以将其设置为None来忽略。

from sklearn.linear_model import LogisticRegression
params = dict(reduce_dim=[None, PCA(5), PCV(10)],
clf=[SVC(), LogisticRegression()],
clf__C=[0.1, 10, 100])
grid_search = GridSearchCV(pipe, param_grid=params)

函数make_pipeline是一个构造pipeline的简短的工具,它可以接受可变数量的estimators并且返回一个pipeline,每个estimator的名称是自动填充的,他不需要指定name。

from sklearn.pipeline import make_pipeline
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import Binarizer make_pipeline(Binarizer(), MultinomialNB())

FeatureUnion: composite(组合)feature spaces

FeatureUnion把若干个transformer object组合成一个新的estimators。这个新的transformer组合了他们的输出,一个FeatureUnion对象接受一个transformer对象列表。

在训练阶段,每一个transformer都在数据集上独立的训练。在数据变换阶段,多有的训练好的Trandformer可以并行的执行。他们输出的样本特征向量被以end-to-end的方式拼接成为一个更大的特征向量。

在这里,FeatureUnion提供了两种服务:

  1. Convenience: 你只需要调用一次fit和transform就可以在数据集上训练一组estimators。
  2. Joint parameter selection: 可以把grid search用在FeatureUnion中所有的estimators的参数这上面。

FeatureUnion和Pipeline可以组合使用来创建更加复杂的模型。

注意:FeatureUnion无法检查两个transformers是否产生了相同的特征输出,它仅仅产生了一个原来互相分离的特征向量的集合。确保其产生不一样的特征输出是调用者的事情。

用法:

FeatureUnion对象实例使用(key, value)构成的list来构造,key是你自己起的transformation的名称,value是一个estimator对象。

from sklearn.pipeline import FeatureUnion
from sklearn.decomposition import PCA
from sklearn.decomposition import KernelPCA
estimators = [('linear_pca', PCA()), ('kernel_pca', KernelPCA())]
combined = FeatureUnion(estimators)
combined

与pipeline类似,feature unions也有一个比较简单地构造方法make_union,不需要显式的给出name。

Pipeline和FeatureUnion的更多相关文章

  1. sklearn 中的 Pipeline 机制 和FeatureUnion

    一.pipeline的用法 pipeline可以用于把多个estimators级联成一个estimator,这么 做的原因是考虑了数据处理过程中一系列前后相继的固定流程,比如feature selec ...

  2. sklearn中pipeline的用法和FeatureUnion

    一.pipeline的用法 pipeline可以用于把多个estimators级联成一个estimator,这么 做的原因是考虑了数据处理过程中一系列前后相继的固定流程,比如feature selec ...

  3. [Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset

    The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly def ...

  4. [Feature] Final pipeline: custom transformers

    有视频:https://www.youtube.com/watch?v=BFaadIqWlAg 有代码:https://github.com/jem1031/pandas-pipelines-cust ...

  5. [Feature] Build pipeline

    准备数据集 一.数据集 Ref: 6. Dataset loading utilities[各种数据集选项] 第一部分,加载原始iris数据集的数据: 第二部分,先增加一行,再增加一列: #%% pa ...

  6. pipeline和baseline是什么?

    昨天和刚来项目的机器学习小白解释了一边什么baseline 和pipeline,今天在这里总结一下什么是baseline和pipeline. 1.pipeline 1.1 从管道符到pipeline ...

  7. [占位-未完成]scikit-learn一般实例之十一:异构数据源的特征联合

    [占位-未完成]scikit-learn一般实例之十一:异构数据源的特征联合 Datasets can often contain components of that require differe ...

  8. 使用sklearn优雅地进行数据挖掘【转】

    目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回 ...

  9. 使用sklearn优雅地进行数据挖掘

    目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回 ...

随机推荐

  1. flask跨域请求三行代码搞定

    flask跨域请求三行代码就可以搞定.但是请注意几点: 第一:只能返回json格式数据,比如list.ndarray等都不可以 第二:返回的对象必须是是字符串.元组.响应实例或WSGI可调用. pyt ...

  2. linux查看及设置别名,权限,生成ssh秘钥

    1.alias :查看系统中所有的命令别名 2.设定别名 alias 别名='原命令' 3.删除别名 unalias 别名 4.使别名永久生效    vi  ~/.bashrc  写入这个文件中即可永 ...

  3. UNIX网络编程 第5章 TCP客户/服务器程序示例

    UNIX网络编程 第5章 TCP客户/服务器程序示例

  4. Spring4笔记1--Spring概述、IoC

    Spring概述: Spring框架: Spring 由 20 多个模块组成,它们可以分为数据访问/集成(Data Access/Integration).Web.面向切面编程(AOP,  Aspec ...

  5. 【bzoj题解】题解传送门

    如题,题解传送门: 1001 1008 1012

  6. 【洛谷】P1445 没占到1444的愤怒

    继续洛谷刷水日常,突然遇到一道不是很水的题目…… https://www.luogu.org/problem/show?pid=1445 题意:给定n(1<=n<=1000000),求方程 ...

  7. 2.Centos-Docker-shipyard中文版安装

    1.准备(所有服务器都要执行) a.设置主机名和hosts vi /etc/hosts 192.168.1.2 centos-master 192.168.1.4 centos-minion-2 b. ...

  8. Flask:redirect()函数

    Windows 10家庭中文版,Python 3.6.4,Flask 1.0.2 重定向,就是在客户端提交请求后,本来是访问A页面,结果,后台给了B页面,当然,B页面中才有需要的信息. 在Flask中 ...

  9. 线性表应用--Josephus问题的解法(Python 版)

    线性表应用 --Josephus问题的解法(Python 版) Josephus问题描述:假设有n个人围坐一圈,现在要求从第k个人开始报数,报到第m个数的人退出.然后从下一个人开始继续报数并按照相同的 ...

  10. 使用html+css+js实现魔性的舞蹈

    使用html+css+js实现魔性的舞蹈,让我们燥起来!!! 效果图: 代码如下,复制代码即可使用: <!DOCTYPE html> <html > <head> ...