Pipeline和FeatureUnion
注:本文是人工智能研究网的学习笔记
Pipeline:chaining(链接)estimators
Pipeline可以用于把多个estimators级联合成一个estimator。这么做的原因是考虑了数据处理过程的一系列前后相继的固定流程,比如:feature selection --> normalization --> classification。
在这里,Pipeline提供了两种服务:
- Convenience: 你只需要一次fit和predict就可以在数据集上训练一组estimators。
- Join parameter selection: 可以把grid search用在pipeline中所有的estimators的参数组合上面。
注意: pineline中除了最后一个之外的所有的estimators都必须是变换器(transformers)(也就是说必须要有一个transform方法)。最后一个estimator可以是任意的类型(transformer, classifier, regresser, etc)。
调用pipeline estimator的fit方法,就等于是轮流调用每一个estimator的fit函数一样,不断地变换输入,然后把结果传递到下一个阶段(step)的estimator。Pipeine对象实例拥有最后一个estimator的所有的方法。也就是说,如果最后一个estimator是一个分类器,则整个pipeline就可以作为一个分类器使用,如果最后一个eatimator是一个聚类器,则整个pipeline就可以作为一个聚类器使用。
Pipeline用法:
Pipeline对象使用(key, value)列表来构建,其中key是一个标识步骤的名称字符串,值是一个estimator对象:
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.decomposition import PCA # 主成分分析
estimators = [('reduce_dim', PCA()), ('clf', SVC()) ]
pipe = Pipeline(estimators)
print(pipe)
print('-----------')
print(pipe.steps)
print('-----------')
print(pipe.named_steps['clf'])

Pipeline中estimators的参数通过__语法来获取
pipe.set_params(clf__C=10)
上面的方式在网格搜索中尤其好用
from sklearn.model_selection import GridSearchCV
params = dict(reduce_dim__n_components=[2, 5, 10],
clf__C=[0.1, 10, 100])
grid_search = GridSearchCV(pipe, param_grid=params)
单个的阶段(Step)可以使用参数替换,而且非最后阶段(non-final steps)还可以将其设置为None来忽略。
from sklearn.linear_model import LogisticRegression
params = dict(reduce_dim=[None, PCA(5), PCV(10)],
clf=[SVC(), LogisticRegression()],
clf__C=[0.1, 10, 100])
grid_search = GridSearchCV(pipe, param_grid=params)
函数make_pipeline是一个构造pipeline的简短的工具,它可以接受可变数量的estimators并且返回一个pipeline,每个estimator的名称是自动填充的,他不需要指定name。
from sklearn.pipeline import make_pipeline
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import Binarizer
make_pipeline(Binarizer(), MultinomialNB())

FeatureUnion: composite(组合)feature spaces
FeatureUnion把若干个transformer object组合成一个新的estimators。这个新的transformer组合了他们的输出,一个FeatureUnion对象接受一个transformer对象列表。
在训练阶段,每一个transformer都在数据集上独立的训练。在数据变换阶段,多有的训练好的Trandformer可以并行的执行。他们输出的样本特征向量被以end-to-end的方式拼接成为一个更大的特征向量。
在这里,FeatureUnion提供了两种服务:
- Convenience: 你只需要调用一次fit和transform就可以在数据集上训练一组estimators。
- Joint parameter selection: 可以把grid search用在FeatureUnion中所有的estimators的参数这上面。
FeatureUnion和Pipeline可以组合使用来创建更加复杂的模型。
注意:FeatureUnion无法检查两个transformers是否产生了相同的特征输出,它仅仅产生了一个原来互相分离的特征向量的集合。确保其产生不一样的特征输出是调用者的事情。
用法:
FeatureUnion对象实例使用(key, value)构成的list来构造,key是你自己起的transformation的名称,value是一个estimator对象。
from sklearn.pipeline import FeatureUnion
from sklearn.decomposition import PCA
from sklearn.decomposition import KernelPCA
estimators = [('linear_pca', PCA()), ('kernel_pca', KernelPCA())]
combined = FeatureUnion(estimators)
combined

与pipeline类似,feature unions也有一个比较简单地构造方法make_union,不需要显式的给出name。
Pipeline和FeatureUnion的更多相关文章
- sklearn 中的 Pipeline 机制 和FeatureUnion
一.pipeline的用法 pipeline可以用于把多个estimators级联成一个estimator,这么 做的原因是考虑了数据处理过程中一系列前后相继的固定流程,比如feature selec ...
- sklearn中pipeline的用法和FeatureUnion
一.pipeline的用法 pipeline可以用于把多个estimators级联成一个estimator,这么 做的原因是考虑了数据处理过程中一系列前后相继的固定流程,比如feature selec ...
- [Machine Learning with Python] My First Data Preprocessing Pipeline with Titanic Dataset
The Dataset was acquired from https://www.kaggle.com/c/titanic For data preprocessing, I firstly def ...
- [Feature] Final pipeline: custom transformers
有视频:https://www.youtube.com/watch?v=BFaadIqWlAg 有代码:https://github.com/jem1031/pandas-pipelines-cust ...
- [Feature] Build pipeline
准备数据集 一.数据集 Ref: 6. Dataset loading utilities[各种数据集选项] 第一部分,加载原始iris数据集的数据: 第二部分,先增加一行,再增加一列: #%% pa ...
- pipeline和baseline是什么?
昨天和刚来项目的机器学习小白解释了一边什么baseline 和pipeline,今天在这里总结一下什么是baseline和pipeline. 1.pipeline 1.1 从管道符到pipeline ...
- [占位-未完成]scikit-learn一般实例之十一:异构数据源的特征联合
[占位-未完成]scikit-learn一般实例之十一:异构数据源的特征联合 Datasets can often contain components of that require differe ...
- 使用sklearn优雅地进行数据挖掘【转】
目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回 ...
- 使用sklearn优雅地进行数据挖掘
目录 1 使用sklearn进行数据挖掘 1.1 数据挖掘的步骤 1.2 数据初貌 1.3 关键技术2 并行处理 2.1 整体并行处理 2.2 部分并行处理3 流水线处理4 自动化调参5 持久化6 回 ...
随机推荐
- 回顾一些较简单的dp题
1.导弹拦截 (+贪心) 两问:一个导弹拦截系统最多能拦多少导弹 要拦截所有导弹至少需要多少拦截系统 第一问感觉是一个比较巧妙的方法: 维护一个单调递减的序列 length[] 记录的是拦截导弹的高 ...
- sklearn进行拟合
# codind:utf-8 from sklearn.linear_model import SGDRegressor,LinearRegression,Ridge from sklearn.pre ...
- post请求远程url 报错“基础连接已经关闭...Authentication.AuthenticationException...远程证书无效”解决方案
当我们有时用代码编写post请求url远程地址会报“基础连接已经关闭: 未能为 SSL/TLS 安全通道建立信任关系. ---> System.Security.Authentication.A ...
- perl6: hash小笔记
> ,,, { => , => } > my $a = :%h h => { => , => } > $a.perl :h({, }) > my ...
- 嵌入式Linux截图工具gsnap移植与分析【转】
转自:http://blog.csdn.net/lu_embedded/article/details/53934184 版权声明:开心源自分享,快乐源于生活 —— 分享技术,传递快乐.转载文章请注明 ...
- Ubuntu_安装Wiz笔记
前言 安装完成了Linux,有了搜狗输入法,我们还需要笔记软件,本文主要介绍如何安装为知笔记 安装步骤 找到wiz官网:http://www.wiz.cn/ 获取Linux安装教程 安装QT 下载的Q ...
- 数据库-mysql视图
视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,并可以将其当作表来使用 一:创建视图 create view view ...
- 洛谷P3387缩点
传送门 有向图.. 代码中有两种方法,拓扑排序和记忆化搜索 #include <iostream> #include <cstdio> #include <cstring ...
- 追MM与设计模式
1.FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了.麦当劳和肯德基就是生产鸡翅 ...
- centos7.2安装mysql5.7
1.安装前工作 在安装前需要确定现在这个系统有没有 mysql,如果有那么必须卸载(在 centos7 自带的是 mariaDb 数据库,所以第一步是卸载数据库). 卸载系统自带的Mariadb: 查 ...