Pseudo-Random Numbers 

Computers normally cannot generate really random numbers, but frequently are used to generate sequences of pseudo-random numbers. These are generated by some algorithm, but appear for all practical purposes to be really random. Random numbers are used in many applications, including simulation.

A common pseudo-random number generation technique is called the linear congruential method. If the last pseudo-random number generated was L, then the next number is generated by evaluating ( , where Z is a constant multiplier, I is a constant increment, and M is a constant modulus. For example, suppose Z is 7, I is 5, and M is 12. If the first random number (usually called the seed) is 4, then we can determine the next few pseudo-random numbers are follows:

As you can see, the sequence of pseudo-random numbers generated by this technique repeats after six numbers. It should be clear that the longest sequence that can be generated using this technique is limited by the modulus, M.

In this problem you will be given sets of values for Z, I, M, and the seed, L. Each of these will have no more than four digits. For each such set of values you are to determine the length of the cycle of pseudo-random numbers that will be generated. But be careful: the cycle might not begin with the seed!

Input

Each input line will contain four integer values, in order, for Z, I, M, and L. The last line will contain four zeroes, and marks the end of the input data. L will be less than M.

Output

For each input line, display the case number (they are sequentially numbered, starting with 1) and the length of the sequence of pseudo-random numbers before the sequence is repeated.

Sample Input

7 5 12 4
5173 3849 3279 1511
9111 5309 6000 1234
1079 2136 9999 1237
0 0 0 0

Sample Output

Case 1: 6
Case 2: 546
Case 3: 500
Case 4: 220
 #include<iostream>
#include<string.h>
#include<stdio.h>
#include<ctype.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<set>
#include<math.h>
#include<vector>
#include<map>
#include<deque>
#include<list>
using namespace std;
int a[]; int main()
{
int Z,I,M,L,t=;
while ( scanf("%d%d%d%d",&Z,&I,&M,&L))
{
t=t+;
if (Z*I*M*L==)
break;
memset(a,,sizeof(a));
int k=;
L=(Z*L+I)%M;
while(!a[L])
{
k=k+;
a[L] = ;
L = (Z*L+I)%M;
}
printf("Case %d: %d\n",t,k);
}
return ;
}

UVA 350 Pseudo-Random Numbers的更多相关文章

  1. Pseudo Random Nubmer Sampling

    Pseudo Random Nubmer Sampling https://en.wikipedia.org/wiki/Inverse\_transform\_sampling given a dis ...

  2. C++ Standard-Library Random Numbers

    Extracted from Section 17.4 Random Numbers, C++ Primer 5th. Ed. The random-number library generates ...

  3. uva 10712 - Count the Numbers(数位dp)

    题目链接:uva 10712 - Count the Numbers 题目大意:给出n,a.b.问说在a到b之间有多少个n. 解题思路:数位dp.dp[i][j][x][y]表示第i位为j的时候.x是 ...

  4. UVA 10539 - Almost Prime Numbers(数论)

    UVA 10539 - Almost Prime Numbers 题目链接 题意:给定一个区间,求这个区间中的Almost prime number,Almost prime number的定义为:仅 ...

  5. Random Numbers Gym - 101466K dfs序+线段树

    Tamref love random numbers, but he hates recurrent relations, Tamref thinks that mainstream random g ...

  6. Generating Gaussian Random Numbers(转)

    Generating Gaussian Random Numbers http://www.taygeta.com/random/gaussian.html This note is about th ...

  7. 2017 ACM-ICPC, Universidad Nacional de Colombia Programming Contest K - Random Numbers (dfs序 线段树+数论)

    Tamref love random numbers, but he hates recurrent relations, Tamref thinks that mainstream random g ...

  8. UVA 350 Pseudo-Random Numbers 伪随机数(简单)

    题意:给定Z, I, M,  L,根据随机数产生式k=(Z*L+I)%M.但是L表示的是上一个产生的数,比如根据产生式产生了序列{2,5,4,3}那么5是由L=2算来的,4由L=5算来的..第1个所产 ...

  9. [Swift] 随机数 | Random numbers

    ★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...

随机推荐

  1. Linux USB驱动学习总结(一)---- USB基本概念及驱动架构

    USB,Universal Serial Bus(通用串行总线),是一个外部总线标准,用于规范电脑与外部设备的连接和通讯.是应用在PC领域的接口技术.USB接口支持设备的即插即用和热插拔功能.USB是 ...

  2. Linux Module框架【转】

    转自:http://www.cnblogs.com/LittleHann/p/4558719.html catalog 1. 概述 2. 使用模块 3. 插入和删除模块 4. 自动化与热插拔 5. 版 ...

  3. poj1077

    题意:给出一个八数码问题,求解法,不可解则输出unsolvable. 分析:可以用ida*算法,估价函数可以使用每个数码到其最终位置的最短距离之和.对于不可解的判断,我这里用迭代深度大于100时判定为 ...

  4. linux cpu、内存、硬盘空间查询

    [CPU] 算式: CPU总核数 = 物理CPU个数 * 每颗物理CPU的核数 总逻辑CPU数 = 物理CPU个数 * 每颗物理CPU的核数 * 超线程数 #查看CPU型号 cat /proc/cpu ...

  5. Python全局变量和局部变量

    全局变量和局部变量 定义在函数内部的变量拥有一个局部作用域,定义在函数外的拥有全局作用域. 局部变量只能在其被声明的函数内部访问,而全局变量可以在整个程序范围内访问.调用函数时,所有在函数内声明的变量 ...

  6. 应用服务器中对JDK的epoll空转bug的处理

    原文链接:应用服务器中对JDK的epoll空转bug的处理 前面讲到了epoll的一些机制,与select和poll等传统古老的IO多路复用机制的一些区别,这些区别实质可以总结为一句话, 就是epol ...

  7. cuowu

    ngFor不能用于Object rowspan colspan不能绑定变量,要用attr.colspan https://stackoverflow.com/questions/35615751/wh ...

  8. hihoCoder #1184 : 连通性二·边的双连通分量(边的双连通分量模板)

    #1184 : 连通性二·边的双连通分量 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在基本的网络搭建完成后,学校为了方便管理还需要对所有的服务器进行编组,网络所的老 ...

  9. 触发器中的inserted表和deleted表

    触发器语句中使用了两种特殊的表:deleted 表和 inserted 表.Microsoft? SQL Server 2000 自动创建和管理这些表.可以使用这两个临时的驻留内存的表测试某些数据修改 ...

  10. Codeforces 429C Guess the Tree(状压DP+贪心)

    吐槽:这道题真心坑...做了一整天,我太蒻了... 题意 构造一棵 $ n $ 个节点的树,要求满足以下条件: 每个非叶子节点至少包含2个儿子: 以节点 $ i $ 为根的子树中必须包含 $ c_i ...