UVA 350 Pseudo-Random Numbers
| Pseudo-Random Numbers |
Computers normally cannot generate really random numbers, but frequently are used to generate sequences of pseudo-random numbers. These are generated by some algorithm, but appear for all practical purposes to be really random. Random numbers are used in many applications, including simulation.
A common pseudo-random number generation technique is called the linear congruential method. If the last pseudo-random number generated was L, then the next number is generated by evaluating (
, where Z is a constant multiplier, I is a constant increment, and M is a constant modulus. For example, suppose Z is 7, I is 5, and M is 12. If the first random number (usually called the seed) is 4, then we can determine the next few pseudo-random numbers are follows:

As you can see, the sequence of pseudo-random numbers generated by this technique repeats after six numbers. It should be clear that the longest sequence that can be generated using this technique is limited by the modulus, M.
In this problem you will be given sets of values for Z, I, M, and the seed, L. Each of these will have no more than four digits. For each such set of values you are to determine the length of the cycle of pseudo-random numbers that will be generated. But be careful: the cycle might not begin with the seed!
Input
Each input line will contain four integer values, in order, for Z, I, M, and L. The last line will contain four zeroes, and marks the end of the input data. L will be less than M.
Output
For each input line, display the case number (they are sequentially numbered, starting with 1) and the length of the sequence of pseudo-random numbers before the sequence is repeated.
Sample Input
7 5 12 4
5173 3849 3279 1511
9111 5309 6000 1234
1079 2136 9999 1237
0 0 0 0
Sample Output
Case 1: 6
Case 2: 546
Case 3: 500
Case 4: 220
#include<iostream>
#include<string.h>
#include<stdio.h>
#include<ctype.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<set>
#include<math.h>
#include<vector>
#include<map>
#include<deque>
#include<list>
using namespace std;
int a[]; int main()
{
int Z,I,M,L,t=;
while ( scanf("%d%d%d%d",&Z,&I,&M,&L))
{
t=t+;
if (Z*I*M*L==)
break;
memset(a,,sizeof(a));
int k=;
L=(Z*L+I)%M;
while(!a[L])
{
k=k+;
a[L] = ;
L = (Z*L+I)%M;
}
printf("Case %d: %d\n",t,k);
}
return ;
}
UVA 350 Pseudo-Random Numbers的更多相关文章
- Pseudo Random Nubmer Sampling
Pseudo Random Nubmer Sampling https://en.wikipedia.org/wiki/Inverse\_transform\_sampling given a dis ...
- C++ Standard-Library Random Numbers
Extracted from Section 17.4 Random Numbers, C++ Primer 5th. Ed. The random-number library generates ...
- uva 10712 - Count the Numbers(数位dp)
题目链接:uva 10712 - Count the Numbers 题目大意:给出n,a.b.问说在a到b之间有多少个n. 解题思路:数位dp.dp[i][j][x][y]表示第i位为j的时候.x是 ...
- UVA 10539 - Almost Prime Numbers(数论)
UVA 10539 - Almost Prime Numbers 题目链接 题意:给定一个区间,求这个区间中的Almost prime number,Almost prime number的定义为:仅 ...
- Random Numbers Gym - 101466K dfs序+线段树
Tamref love random numbers, but he hates recurrent relations, Tamref thinks that mainstream random g ...
- Generating Gaussian Random Numbers(转)
Generating Gaussian Random Numbers http://www.taygeta.com/random/gaussian.html This note is about th ...
- 2017 ACM-ICPC, Universidad Nacional de Colombia Programming Contest K - Random Numbers (dfs序 线段树+数论)
Tamref love random numbers, but he hates recurrent relations, Tamref thinks that mainstream random g ...
- UVA 350 Pseudo-Random Numbers 伪随机数(简单)
题意:给定Z, I, M, L,根据随机数产生式k=(Z*L+I)%M.但是L表示的是上一个产生的数,比如根据产生式产生了序列{2,5,4,3}那么5是由L=2算来的,4由L=5算来的..第1个所产 ...
- [Swift] 随机数 | Random numbers
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
随机推荐
- 谈谈Linux内核驱动的coding style【转】
转自:http://www.cnblogs.com/wwang/archive/2011/02/24/1960283.html 最近在向Linux内核提交一些驱动程序,在提交的过程中,发现自己的代码离 ...
- Percona XtraBackup 实现全备&增量备份与恢复【转】
percona-xtrabackup主要是有两个工具,其中一个是xtrabackup,一个是innobackupex,后者是前者封装后的一个脚本.在针对MySQL的物理备份工具中,大概是最流行也是最强 ...
- python使用twisted搭建的一个socket服务
服务端 # -*- coding: utf-8 -*- # @Time : 2018/9/19 21:41 # @Author : cxa # @File : tsTservTW.py # @Soft ...
- 自动化测试Robotium获取当前页面的activity,用于判断是否进入这个页面
一.启动app 二.进入命令行窗口输入 adb shell “dumpsys activity activities | grep mFocusedActivity” 三.断言方法 assertTru ...
- Spring Boot连接Mysql数据库问题解决
在spring Boot项目中使用mysql数据库进行数据库的增删查改,出现以下错误: Error starting ApplicationContext. To display the auto-c ...
- excl筛选求和
Excel中的筛选,是一个很常用的功能.但不知道是有意还是疏忽,Excel没有直接提供在筛选后的一些统计功能,例如求和.平均值等.而由于筛选的主要功能之一就是可以方便快捷的进行变换,所普通的以直接在数 ...
- Ionic实战二:购物车
用户名密码都为空 此app功能主要有如下 1.首页轮播和商品列表展示 2.左侧侧滑页面分类展示 3.商品详情页面展示 以及购买 4.购物车 订单填写 支付等页面          
- 码云Android项目构建注意事项(转载)
1.ant项目 build.xml必须位于项目根目录. 2.maven项目 pom.xml必须位于项目根目录. 3.gradle项目 由于gradle的配置灵活,我们做了一些规范,并且增加了一下机制来 ...
- 《Android源码设计模式》--策略模式
No1: 定义:策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换.策略模式让算法独立于使用它的客户而独立变化. No2: 使用场景: 1)针对同一类型问题的多种处理方式,仅 ...
- iview-cli 项目、iView admin 跨域问题解决方案
在build 目录的 webpack.dev.config.js 目录中 module.exports = merge(webpackBaseConfig, { devtool: '#source-m ...