对于数字n(大于1)。从1到n有多少种binary search tree(BST序列)?
当n=3时,BST序列为:

1         3     3    2     1
     \         /     /      / \      \
     3      2    1    1  3     2
     /       /       \                  \
   2      1         2                3
共5种。

分析:

N=1时,BST 序列为
 1
 /   \
      null  null
1种

N=2时,BST 序列为
1        2
 \        /

2    1

2种

N=3时。BST序列为
   1         3     3      2      1
     \         /     /       / \       \
     3     2     1      1   3      2
    /       /        \                    \
   2     1         2                    3
5种

N=4时。BST序列为
1                                                        4                      2                                          3
 \             +                                        /                 +    / \                             +          / \
 2,3,4(5种)                              1,2,3(5种)   (1种)1  3,4 (2种)              (2种)1 ,2    4(1种)
共  5+5+1*2+2*1 = 14种

N=5时。BST序列为

1                                              2                                                  3                                                     4

\                                             / \                                                 /  \                                                  /  \                                    

2,3,4,5(14种)             (1种)1   3,4,5(5种)           (2种)1,2  4,5(2种)               (5种)1,2,3  5(1种)

5

/

1,2,3,4(14种)

因此,count(5) = 14 + 1*5 + 2*2 + 5*1 + 14 = 42种

看上去存在一种递推关系。考虑DP来解。
找规律。求递推公式:
设S(n)为n相应的情况数,S(0)=1 ,则。
S(1) = 1
S(2) = 2
S(3) = S(0) * S(2) + S(1) * S(1) + S(2) * S(0) = 5
S(4) = S(0) * S(3) + S(1) * S(2) + S(2) * S(1) + S(3) * S(0) = 14

不难发现,
S(N) = Sum{S(K-1) * S(N-K) ,当中K∈[1,N]}

得到了递推公式,下一步就是写代码了:

public class Solution {
public int NumTrees(int n) {
if(n <= 0) {
return 1;
} // - dp array
var dp = new int[n+1];
dp[0] = 1;
dp[1] = 1; for(var j = 2; j <= n; j++){
// i: 1.. j
// dp[j] = sum (dp[i-1] * dp[j-i])
var s = 0;
for(var i = 1; i <= j; i++){
s += dp[i-1] * dp[j-i];
} dp[j] = s;
} return dp[n];
}
}

Leet Code -- Unique BST的更多相关文章

  1. #Leet Code# Unique Path(todo)

    描述: 使用了递归,有些计算是重复的,用了额外的空间,Version 1是m*n Bonus:一共走了m+n步,例如 m = 2, n = 3 [#, @, @, #, @],所以抽象成数学问题,解是 ...

  2. #Leet Code# Unique Tree

    语言:Python 描述:使用递归实现 class Solution: # @return an integer def numTrees(self, n): : elif n == : else: ...

  3. 【Leet Code】Palindrome Number

    Palindrome Number Total Accepted: 19369 Total Submissions: 66673My Submissions Determine whether an ...

  4. Leet Code 771.宝石与石头

    Leet Code编程题 希望能从现在开始,有空就做一些题,自己的编程能力太差了. 771 宝石与石头 简单题 应该用集合来做 给定字符串J 代表石头中宝石的类型,和字符串 S代表你拥有的石头. S  ...

  5. #Leet Code# Gray Code

    描述: 要求相邻数2进制差一位 先获得n-1的列表表示小于 2^(n-1) 的符合要求的列表,加上最高位的加成 2^(n-1) 就是大于等于 2^(n-1) 的符合要求的列表,后者翻转一下就能够与前者 ...

  6. #Leet Code# Permutation

    描述: 输出全排列 代码: class Solution: # @param num, a list of integer # @return a list of lists of integers ...

  7. #Leet Code# Populating Next Right Pointers in Each Node II

    描述:注意需要先self.connect(right)再self.connect(left),否则会有case通不过,原因是左边递归执行时依赖与右边的next已经建立,而先执行connect(left ...

  8. #Leet Code# Sqrt

    描述:log(n) 代码: class Solution: # @param x, an integer # @return an integer def getVal(self, begin, en ...

  9. #Leet Code# Best Time to Buy and Sell Stock

    描述:数组 A,对于 i < j, 找到最大的 A[j] - A[i] 代码: class Solution: # @param prices, a list of integer # @ret ...

随机推荐

  1. 关于ListView中getView被重复调用的问题

    我用ListView显示数据时,自定义了一个适配器(extends ArrayAdapter),然后重写了getView方法,现在出现一个问题,就是这个getView()方法被重复调用了,比如我的_d ...

  2. MongoDB学习笔记(一)--基础

    Insert                                                                                        MongoD ...

  3. [Javascript]Clouse Cove, 2 ,Modifying Bound Values After Closure

    function buildCoveTicketMarker(transport){ var passengerNumber = 0; return function(name){ passenger ...

  4. Office WORD如何关闭自动检查语法

    只要把打钩的地方全部去掉即可.

  5. Power Network (poj 1459 网络流)

    Language: Default Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 23407   ...

  6. 不兼容:不支持SCSI硬盘

    获取机器硬件失败,可能你使用了SCSI硬盘,请更换一台主机进行安装 聚生网管2.11版本不支持scsi硬盘. 终于体会到了不兼容的麻烦了.

  7. 安装apache+php记录

    安装apache yum install httpd 修改apache配置文件,可以修改apache的默认端口号,根目录等 /etc/httpd/conf/httpd.conf 启动/重启apache ...

  8. PHP高级教程-安全邮件

    PHP Secure E-mails 在上一节中的 PHP e-mail 脚本中,存在着一个漏洞. PHP E-mail 注入 首先,请看上一章中的 PHP 代码: <html> < ...

  9. 【安卓】给gallery内&quot;控件&quot;挂载事件,滑动后抬起手指时也触发事件(滑动时不应触发)的解决、!

    思路: 1.gallery内控件挂载事件(如:onClickListener)的方法类似listview,可直接在baseAdapter.getView内给控件挂载(详细方法百度). 2.貌似没问题, ...

  10. python之模块csv之 读取CSV文件(reader和DictReader2个方法)

    # -*- coding: utf-8 -*- #python 27 #xiaodeng #读取CSV文件(reader和DictReader2个方法) import csv #csv文件,是一种常用 ...