【题目链接】:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=378

【题意】



给你n个方形;

由3个属性,长宽高决定;

你可以任意摆放这个方形(即把哪一面朝下方);

然后每种方形都有无限个;

一个方形能够摆在另外一个方形上面,当且仅当这个方形的长和宽都严格大于另外一个方形的长和宽(即changi>changj && kuani>kuanj);

问你这n个方形最多能叠多高;

【题解】



把每个方形的3种摆法都取出来;

(即取3个属性中的某一个属性出来作为高,另外两个作为宽和长);

然后如果某一个方形x可以放到另外一个方形y的上面;

则连一条有向边x指向y;

然后问题就能转化为一个有向无环图上的最长路了;

起点不一定

也即一条最长链

写个记忆化搜索就好;

f[x]=max(f[x],f[y]+h[x]),(x,y)∈E,h[x]为x的高



【Number Of WA】



1



【反思】



忘记初始化+忘记输出Case



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ms(x,y) memset(x,y,sizeof x)
#define Open() freopen("D:\\rush.txt","r",stdin)
#define Close() ios::sync_with_stdio(0) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0);
const int N = 30; struct abc{
LL c,k,g;
}; int n,b[4],nn;
LL dp[N*3+100];
abc a[N*3+100];
vector <int> G[N*3+100]; LL dfs(int x){
if (dp[x]!=-1) return dp[x];
LL &ans = dp[x];
ans = a[x].g;
int len = G[x].size();
rep1(i,0,len-1){
int y = G[x][i];
ans = max(ans,dfs(y) + a[x].g);
}
return dp[x];
} int main()
{
//Open();
int kk = 0;
while (~scanf("%d",&n) && n){
kk++;
ms(dp,-1);
nn = 0;
rep1(i,1,N*3) G[i].clear();
rep1(i,1,n){
rep1(j,1,3)
scanf("%d",&b[j]);
sort(b+1,b+1+3);
rep1(j,1,3){
nn++;
rep2(k,3,1)
if (k!=j){
a[nn].c = b[k];
break;
}
rep1(k,1,3)
if (k!=j){
a[nn].k = b[k];
break;
}
a[nn].g = b[j];
}
}
n = nn;
rep1(i,1,n)
rep1(j,1,n)
if (a[i].c > a[j].c && a[i].k > a[j].k)
G[i].pb(j);
LL d = 0;
rep1(i,1,n)
d = max(d,dfs(i));
printf("Case %d: maximum height = ",kk);
printf("%lld\n",d);
}
return 0;
}

【UVA 437】The Tower of Babylon(记忆化搜索写法)的更多相关文章

  1. poj1179 区间dp(记忆化搜索写法)有巨坑!

    http://poj.org/problem?id=1179 Description Polygon is a game for one player that starts on a polygon ...

  2. UVA 10003 Cutting Sticks 区间DP+记忆化搜索

    UVA 10003 Cutting Sticks+区间DP 纵有疾风起 题目大意 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用 输入输出 第一行是木棍的 ...

  3. UVA 10400 Game Show Math (dfs + 记忆化搜索)

    Problem H Game Show Math Input: standard input Output: standard output Time Limit: 15 seconds A game ...

  4. UVA 11884 A Shooting Game(记忆化搜索)

    A and B are playing a shooting game on a battlefield consisting of square-shaped unit blocks. The bl ...

  5. hdu 2089 记忆化搜索写法(数位dp)

    /* 记忆化搜索,第二维判断是否是6 */ #include<stdio.h> #include<string.h> #define N 9 int dp[N][2],digi ...

  6. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  7. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  8. UVa 437 The Tower of Babylon(DP 最长条件子序列)

     题意  给你n种长方体  每种都有无穷个  当一个长方体的长和宽都小于还有一个时  这个长方体能够放在还有一个上面  要求输出这样累积起来的最大高度 由于每一个长方体都有3种放法  比較不好控制 ...

  9. UVA - 437 The Tower of Babylon(dp-最长递增子序列)

    每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...

随机推荐

  1. 叁、js中的css

    一.子选择器:用来选择一个父元素直接的子元素,不包括子元素的子元素,它的符号为“>” 注:ie6不支持子代选择器. <!DOCTYPE html PUBLIC "-//W3C// ...

  2. 玩转HTML5移动页面(动效篇)

    为一名前端,在拿到设计稿时你有两种选择: 快速输出静态页面 加上高级大气上档次狂拽炫酷屌炸天的动画让页面动起来 作为一个有志向的前端,当然是选2啦!可是需求时间又很短很短,怎么办呢? 这次就来谈谈一些 ...

  3. Linux学习之计算机基础理论

    一.描述计算机的组成及其功能. 计算机系统是由硬件系统(hardware)和软件系统(software system)两部分组成. 硬件系统: 从硬件基本结构上来讲,计算机是由运算器.控制器.存储器. ...

  4. 【图灵杯 F】一道简单的递推题(矩阵快速幂,乘法模板)

    Description 存在如下递推式: F(n+1)=A1*F(n)+A2*F(n-1)+-+An*F(1) F(n+2)=A1*F(n+1)+A2*F(n)+-+An*F(2) - 求第K项的值对 ...

  5. [转载]深入Java单例模式

    在GoF的23种设计模式中,单例模式是比较简单的一种.然而,有时候越是简单的东西越容易出现问题.下面就单例设计模式详细的探讨一下.   所谓单例模式,简单来说,就是在整个应用中保证只有一个类的实例存在 ...

  6. redis为什么选择单线程工作模型

    1.先说一下为什么出现进程,线程 进程:在计算机发明之初就发现,在输入数据时(I/O速度慢),CPU是空闲的,这样就浪费了CPU资源,为了充分利用CPU资源,发明了进程,在输入程序A的数据时,程序B在 ...

  7. 最多包含2/k个不同字符的最长串

    看这里的解答: http://www.cnblogs.com/grandyang/p/5351347.html 通用解决了2和k的问题.

  8. Android实战简易教程-第二十八枪(Uri转String型实例)

    接上一篇文章.我们能够轻易的获取所选图片的uri,那么我们考虑怎样将获取的uri转换成String型的地址呢? 接下来我们通过实例来研究.布局文件和上篇(二十七枪)一致,我们就不再列出,直接看Main ...

  9. hadoop-12-安装ambari-agent

    hadoop-12-安装ambari-agent 在所有的机器上面安装ambari-agent 1, cd /etc/yum.repos.d/vi 三个文件vi ambari.repo#VERSION ...

  10. HDU 4704 Sum Fermat定律

    Problem Description   Sample Input 2   Sample Output 2 Hint 1. For N = 2, S(1) = S(2) = 1. 2. The in ...