题目:洛谷P1463、BZOJ1053、Vijos P1172、codevs2912。

题目大意:对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。

如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。

现在给定一个数N(≤2,000,000,000),求出不超过N的最大的反质数。

解题思路:N那么大,第一反应是找规律。

首先得打出一个范围较小的表(三秒内能打完的),发现:范围大,但反素数很少。

于是果断选择了打表大法!

不过打表也得讲究技巧。首先发现所有反素数(除1以外)都是偶数,那么在循环判断时只需循环偶数即可。

其次发现从60开始,每个反素数都是20的倍数,那么此时每次加20即可。

但二十亿个数,还是很多。怎么办?我们发现,两个反素数直接总是相差很多,那我们每求出一个反素数,就跳过一部分,使得减少循环次数。

最终,成功打出表,见代码(最后那个$2^{32}-1$是占位用的)。

C++ Code:

#include<cstdio>
const int a[]={1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,
5040,7560,10080,15120,20160,25200,27720,45360,50400,55440,83160,110880,166320,
221760,277200,332640,498960,554400,665280,720720,1081080,1441440,2162160,2882880,
3603600,4324320,6486480,7207200,8648640,10810800,14414400,18378360,21621600,32432400,
36756720,43243200,61261200,73513440,110270160,122522400,147026880,183783600,245044800,
328648320,410810400,551350800,698377680,735134400,1102701600,1396755360,2147483647};
int main(){
int n;
scanf("%d",&n);
for(int i=0;;++i)
if(a[i]>n){
printf("%d\n",a[i-1]);
return 0;
}
}

下附打表代码,在我家里的渣机上跑了33分02秒279(O2优化下),不过总归是能打完的。

#include<cstdio>
#define reg register
#define ull unsigned long long
int main(){
freopen("output.txt","w",stdout);
printf("1,");
reg int t=2;
reg ull max=1;
for(reg ull i=2;i<=2000000200;i+=t){
if(i==60)t=20;
reg ull p=1,k=i;
for(reg int j=2;j*j<=k;++j)
if(k%j==0){
reg ull f=1;
for(;k%j==0;k/=j,++f);
p*=f;
}
if(k>1)p<<=1;
if(p>max){
max=p;
printf("%llu,",i);
if(i>=800000000)i+=100000000;else
if(i>=410810400)i+=30000000;else
if(i==328648320)i=410810380;else
if(i>=200000000)i+=50000000;else
if(i==147026880)i+=35000000;else
if(i>=122522400)i+=20000000;else
if(i>=43243200)i+=10000000;else
if(i>=21621600)i+=4000000;else
if(i>=10000000)i+=3000000;else
if(i>=1400000)i+=600000;else
if(i>=1000000)i+=300000;else
if(i>=100000)i+=50000;
}
}
return 0;
}

  

[HAOI2007][SDOI2005]反素数的更多相关文章

  1. 洛谷 P1463 [SDOI2005]反素数ant

    P1463 [SDOI2005]反素数ant 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i< ...

  2. [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]

    [luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...

  3. 【BZOJ】【1053】【HAOI2007】反素数ant

    搜索 经典搜索题目(其实是蒟蒻只会搜……vfleaking好像有更优秀的做法?) 枚举质数的幂,其实深度没多大……因为$2^32$就超过N了……而且质数不能取的太大,所以不会爆…… /******** ...

  4. [BZOJ1053][SDOI2005]反素数ant 数学

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1053 假设这个最大的反素数为$x$,那么$1<p<x$中数的因子数都没有$x$ ...

  5. [SDOI2005]反素数

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  6. P1463 [SDOI2005]反素数ant

    题意: 题解: 思维难度不高,考虑到n较大,而反质数个数较少 所以只要算出每个反质数即可 考虑如何计算,可以发现,我们只需枚举计算出约数有x个的最小数,再做一下判断即可 另外约数的个数=(a1+1)( ...

  7. [SDOI2005]反素数ant

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  8. 洛谷 P1463 [SDOI2005]反素数ant && codevs2912反素数

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4,6 ...

  9. 【HAOI2007】反素数

    [题目链接] 点击打开链接 [算法] 稍加分析可知,问题等价于“求1到n中,因子个数最多的数,若有多个,求最小的” 那么我们该怎么求这个数呢? 约数个数定理 : x = p1^a1p2^a2p3^a3 ...

随机推荐

  1. python下py2exe打包笔记

    1.下载与python版本一致的py2exe插件包 2.安装py2exe,安装后在python目录下存在:\Lib\site-packages\py2exe\... 3.新建一个python脚本文件, ...

  2. GDOI2017 再次酱油记

    Day 0 13:00 pm 啊...今天中午一点钟从ez出发,感觉吼有趣啊.出发前先大喊一声****,在书包里放一本党史,感觉玄学可以救命[滑稽] 15:00 pm 到达东莞,坐标:石龙名冠金凯悦大 ...

  3. PHP检验代码执行效率—时间统计方法

    <?php class runtime { ; ; function get_microtime() { list($usec,$sec) =explode('',microtime()); r ...

  4. HDU 1043 Eight (A*算法)

    题目大意:裸的八数码问题,让你输出空格的一条合法移动路径 首先利用康托展开对排列编号,可以预处理出排列,就不必逆展开了 然后利用A*算法求解 A*算法是一种启发式搜索,具体实现要用到优先队列/堆,不同 ...

  5. camke 参数

    cmake -DCMAKE_INSTALL_PREFIX=/application/mysql-5.5.32 \   -DMYSQL_DATADIR=/application/mysql-5.5.32 ...

  6. 使用vue实现简单键盘,支持移动端和pc端

    常看到各种app应用中使用自定义的键盘,本例子中使用vue2实现个简单的键盘,支持在移动端和PC端使用,欢迎点赞,h5 ios输入框与键盘 兼容性优化 实现效果: Keyboard.vue <t ...

  7. [HAOI2015]树上染色(树形dp)

    [HAOI2015]树上染色 题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所 ...

  8. ZOJ 3365 Integer Numbers

    Integer Numbers Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on ZJU. Origina ...

  9. hadoop-07-ntp服务检查

    hadoop-07-ntp服务检查 cd /etc/more /etc/ntp.conf里面进行了server的配置 service ntpd status / stop/ start 安装ntpd ...

  10. BeautifulSoup的高级应用 之.parent .parents .next_sibling.previous_sibling.next_siblings.previous_siblings

    继上一篇BeautifulSoup的高级应用,主要解说的是contents children descendants string strings stripped_strings.本篇主要解说.pa ...