因为intel杯创新软件比赛过程中,并没有任何记录。现在用一点时间把全过程重演一次用作记录。

学习 pytorch 一段时间后,intel比赛突然不让用 pytoch 了,于是打算转战intel caffe。


ArchLinux 安装intel caffe 失败

首先安装caffe依赖,安装intel mkl,最后编译安装intel caffe

# yaourt -S caffe-git 这句话就可以直接安装caffe,但看起来不是intel caffe
git clone http://github.com/intel/caffe
cd caffe
cp Makefile.config.example Makefile.config
nano Makefile
make all -j4

安装intel mkl时出现问题,发现其不支持arch,问题挺多不如直接安装一个ubuntu

然后转战ubuntu,正好家里有一个旧的移动硬盘

云备份数据,安装ubuntu


Ubuntu16.04 安装intel caffe成功

这里ubuntu的安装就不写了

主要注意旧硬盘需要写gpt分区表,若用于efi启动,需要fat32格式的/boot/efi

caffe安装参考:https://software.intel.com/zh-cn/articles/training-and-deploying-deep-learning-networks-with-caffe-optimized-for-intel-architecture

一样首先安装依赖

sudo apt-get update &&
sudo apt-get -y install build-essential git cmake &&
sudo apt-get -y install libprotobuf-dev libleveldb-dev libsnappy-dev &&
sudo apt-get -y install libopencv-dev libhdf5-serial-dev protobuf-compiler &&
sudo apt-get -y install --no-install-recommends libboost-all-dev &&
sudo apt-get -y install libgflags-dev libgoogle-glog-dev liblmdb-dev &&
sudo apt-get -y install libatlas-base-dev

对于Ubantu16.04,链接库

find .-type f -exec sed -i -e 's^"hdf5.h"^"hdf5/serial/hdf5.h"^g' -e 's^"hdf5_hl.h"^"hdf5/serial/hdf5_hl.h"^g' '{}' ;
cd /usr/lib/x86_64-linux-gnu
sudo ln -s libhdf5_serial.so.10.1.0 libhdf5.so
sudo ln -s libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so

安装intel mkl

首先免费注册申请Intel® Performance Libraries

注册成功会受到一封邮件



下载并按.sh安装,安装过程略了

于是开始调整config,编译

git clone http://github.com/intel/caffe
cd caffe
cp Makefile.config.example Makefile.config
nano Makefile
make all -j4

附上Makefile.config

主要处理mkl,python路径

# Makefile.config

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1 USE_MKL2017_AS_DEFAULT_ENGINE := 1
# or put this at the top your train_val.protoxt or solver.prototxt file:
# engine: "MKL2017"
# or use this option with caffe tool:
# -engine "MKL2017" # USE_MKLDNN_AS_DEFAULT_ENGINE := 1
# Put this at the top your train_val.protoxt or solver.prototxt file:
# engine: "MKLDNN"
# or use this option with caffe tool:
# -engine "MKLDNN" # uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
# You should not set this flag if you will be reading LMDBs with any
# possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++ # If you use Intel compiler define a path to newer boost if not used
# already.
# BOOST_ROOT := # Use remove batch norm optimization to boost inference
DISABLE_BN_FOLDING := 0 #Use conv/eltwise/relu layer fusion to boost inference.
DISABLE_CONV_SUM_FUSION := 0
# Intel(r) Machine Learning Scaling Library (uncomment to build
# with MLSL for multi-node training)
# USE_MLSL :=1 # CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr # CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
-gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=sm_50 \
-gencode arch=compute_50,code=compute_50 # BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := mkl
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
BLAS_INCLUDE := /opt/intel/mkl/include
BLAS_LIB := /opt/intel/mkl/lib/intel64 # Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app SERIAL_HDF5_INCLUDE := /usr/include/hdf5/serial/ # NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
# $(ANACONDA_HOME)/include/python2.7 \
# $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \ # Uncomment to use Python 3 (default is Python 2)
PYTHON_LIBRARIES := boost_python3 python3.5m
PYTHON_INCLUDE := /usr/include/python3.5m \
/usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs)
WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib # Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute # Uncomment to enable training performance monitoring
# PERFORMANCE_MONITORING := 1 # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1 # Uncomment to disable OpenMP support.
# USE_OPENMP := 0 # The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0 # enable pretty build (comment to see full commands)
Q ?= @

编译过程中会出现一些warning,然而发现并没有什么大问题

至此intel caffe安装成功

安装成功后

1.注意添加export PYTHONPATH=$PYTHONPATH:=<your caffe path>/python

不然会有如下报错

import caffe
#Traceback (most recent call last):
# File "<stdin>", line 1, in <module>
# File "/usr/local/lib/python3.5/dist-packages/caffe/__init__.py", line 37, in <module>
# from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver
# File "/usr/local/lib/python3.5/dist-packages/caffe/pycaffe.py", line 49, in <module>
# from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \
#ImportError: libcaffe.so.1.1.0: cannot open shared object file: No such file or directory

2.注意使用python2.7

如果使用python3

import caffe
#Traceback (most recent call last):
# File "<stdin>", line 1, in <module>
# File "/home/tanglizi/caffe/python/caffe/__init__.py", line 37, in <module>
# from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver
# File "/home/tanglizi/caffe/python/caffe/pycaffe.py", line 49, in <module>
# from ._caffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, \
#ImportError: dynamic module does not define module export function (PyInit__caffe)

3.顺便把caffe链接到/usr/bin下面,方便使用

ln -s <your caffe path>/build/tools/caffe /usr/bin/

记intel杯比赛中各种bug与debug【其一】:安装intel caffe的更多相关文章

  1. 记intel杯比赛中各种bug与debug【其三】:intel chainer的安装与使用

    现在在训练模型,闲着来写一篇 顺着这篇文章,顺利安装上intel chainer 再次感谢 大黄老鼠 intel chainer 使用 头一次使用chainer,本以为又入了一个大坑,实际尝试感觉非常 ...

  2. 记intel杯比赛中各种bug与debug【其二】:intel caffe的使用和大坑

    放弃使用pytorch,学习caffe 本文仅记录个人观点,不免存在许多错误 Caffe 学习 caffe模型生成需要如下步骤 编写network.prototxt 编写solver.prototxt ...

  3. 记intel杯比赛中各种bug与debug【其四】:基于长短时记忆神经网络的中文分词的实现

    (标题长一点就能让外行人感觉到高大上) 直接切入主题好了,这个比赛还必须一个神经网络才可以 所以我们结合主题,打算写一个神经网络的中文分词 这里主要写一下数据的收集和处理,网络的设计,代码的编写和模型 ...

  4. 记intel杯比赛中各种bug与debug【其五】:朴素贝叶斯分类器的实现和针对性的优化

    咱这个项目最主要的就是这个了 贝叶斯分类器用于做可以统计概率的二元分类 典型的例子就是垃圾邮件过滤 理论基础 对于贝叶斯算法,这里附上两个链接,便于理解: 朴素贝叶斯分类器的应用-阮一峰的网络日志 基 ...

  5. SQL Server 字段类型 decimal(18,6)小数点前是几位?记一次数据库SP的BUG处理

    原文:SQL Server 字段类型 decimal(18,6)小数点前是几位?记一次数据库SP的BUG处理 SQL Server 字段类型 decimal(18,6)小数点前是几位? 不可否认,这是 ...

  6. 那些盒模型在IE6中的BUG们,工程狮的你可曾遇到过?

    HTML5学堂 那些盒模型在IE6中的BUG们,工程狮的你可曾遇到过? IE6已经渐渐的开始退出浏览器的历史舞台.虽然当年IE6作为微软的一款利器击败网景,但之后也因为版本的持续不更新而被火狐和谷歌三 ...

  7. 转:移动开发中一些bug及解决方案

    网页开发要面对各种各样的浏览器,让人很头疼,而移动开发中,你不但要面对浏览器,还要面对各种版本的手机,iOS好一点,而安卓就五花八门了,你可能在开发中也被它们折磨过,或者正在被它们折磨,我在这里说几个 ...

  8. 写代码的心得,怎么减少编程中的 bug?

    遭遇 bug 的时候,理性的程序员会说:这个 bug 能复现吗? 自负型:这不可能,在我这是好好的. 经验型:不应该,以前怎么没问题? 幻想型:可能是数据有问题. 无辜型:我好几个星期都没碰这块代码了 ...

  9. 新手数据比赛中数据处理方法小结(python)

    第一次参加,天池大数据竞赛(血糖预测),初赛排名1%.因为自己对python不熟悉,所以记录一下在比赛中用到的一些python方法的使用(比较基础细节,大佬绕道): 1.数据初探 data.info( ...

随机推荐

  1. jquery/zepto在插件编写上的几点区别

    1. 自定义事件的命名空间 jq的时间命名空间是用点“.”,而zepto是用冒号“:” 如 //jquery $(this).trigger('cusevent.pluginname'); //zep ...

  2. C#--DataGridView添加DateTimePicker时间控件

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  3. Java Swing 托盘闪烁Demo实例

    桌面程序当中,托盘显示是一个常用的功能. C#的WinForm程序要实现托盘是挺轻松的,而Java Swing要实现这个功能虽然也不难, 但是由于Java Swing开发者或许没有C#多,所以看到很多 ...

  4. struts2学习之基础笔记2

    6.5 Struts2 的基本配置 1web.xml 作用:加载核心过滤器 格式: <filter> ``````` </filter> <filter-mapping& ...

  5. js产生随机数的几个方法

    1.Math.random(); 结果为0-1间的一个随机数(包括0,不包括1) 2.Math.floor(num); 参数num为一个数值,函数结果为num的整数部分. 3.Math.round(n ...

  6. ActiveMQ学习笔记(20)----Consumer高级特性(二)

    1. Message Selectors JMS Selectors 用在获取消息的时候,可以基于消息属性和Xpath语法对消息进行过滤.JMS Selectors有SQL92语义定义.以下是个Sel ...

  7. Dropout 上

    From <白话深度学习与TensorFlow> Dropout 顾名思义是“丢弃”,在一轮训练阶段丢弃一部分网络节点,比如可以在其中的某些层上临时关闭一些节点,让他们既不输入也不输出,这 ...

  8. 原生的ajax请求----(播放托管到爱奇艺上的视频)

    播放视频 $(function(){ //视频播放 $('.play-icon').click(function () { $.ajax({ type:"get", url: &q ...

  9. PHP十六个魔术方法

    PHP中把以两个下划线__开头的方法称为魔术方法(Magic methods),这些方法在PHP中充当了举足轻重的作用. 魔术方法包括: __construct(),类的构造函数 __destruct ...

  10. HDU-1257 最少拦截系统 贪心/DP 最长上升子序列的长度==最长不上升子序列的个数?

    题目链接:https://cn.vjudge.net/problem/HDU-1257 题意 中文题咯中文题咯 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然 ...