Description

  如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌
图(cactus)。所谓简单回路就是指在图上不重复经过任何一个顶点的回路。

  举例来说,上面的第一个例子是一张仙人图,而第二个不是——注意到它有三条简单回路:(4,3,2,1,6
,5,4)、(7,8,9,10,2,3,7)以及(4,3,7,8,9,10,2,1,6,5,4),而(2,3)同时出现在前两
个的简单回路里。另外,第三张图也不是仙人图,因为它并不是连通图。显然,仙人图上的每条边,或者是这张仙
人图的桥(bridge),或者在且仅在一个简单回路里,两者必居其一。定义在图上两点之间的距离为这两点之间最
短路径的距离。定义一个图的直径为这张图相距最远的两个点的距离。现在我们假定仙人图的每条边的权值都是1
,你的任务是求出给定的仙人图的直径。

Input

  输入的第一行包括两个整数n和m(1≤n≤50000以及0≤m≤10000)。其中n代表顶点个数,我们约定图中的顶
点将从1到n编号。接下来一共有m行。代表m条路径。每行的开始有一个整数k(2≤k≤1000),代表在这条路径上
的顶点个数。接下来是k个1到n之间的整数,分别对应了一个顶点,相邻的顶点表示存在一条连接这两个顶点的边
。一条路径上可能通过一个顶点好几次,比如对于第一个样例,第一条路径从3经过8,又从8返回到了3,但是我们
保证所有的边都会出现在某条路径上,而且不会重复出现在两条路径上,或者在一条路径上出现两次。

Output

  只需输出一个数,这个数表示仙人图的直径长度。

Sample Input

15 3
9 1 2 3 4 5 6 7 8 3
7 2 9 10 11 12 13 10
5 2 14 9 15 10 8

Sample Output

8
 
解题思路
 
第一次接触仙人掌的蒟蒻QAQ
今天本来想学一下圆方树,然而还没学到怎么建就卡在了这道题上。
这是一道仙人掌入门题,思路也比较朴素。
对于一颗仙人掌,我们最不容易处理的就是环,对于一个环,我们视为一个点双连通分量。
所以我们使用tarjan
因为一个不在环内的点和环的顶点都可以直接更新答案。
答案用最长路径+子节点最长路径+1更新。
这个点的最长路径用子节点最长路径+1更新。
注意顺序!
在一个环的顶点将整个环抽出(因为是一个环,所以抽出后复制一遍成为一个两倍的链)
然后DP就可以啦
最长路径可以被中间链+子节点最长路径更新
这部分需要使用单调队列维护
最后更新顶点即可^_^
 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct pnt{
int hd;
int fa;
int dfn;
int low;
int mxc;
}p[];
struct ent{
int twd;
int lst;
}e[];
int cnt;
int n,m,k;
int trc;
int ans;
int crt;
int crl[];
int q[];
int h,t;
void ade(int f,int t)
{
cnt++;
e[cnt].twd=t;
e[cnt].lst=p[f].hd;
p[f].hd=cnt;
}
void ringbrk(int st,int fi)
{
crt=;
while(fi!=st)
{
crl[++crt]=p[fi].mxc;
fi=p[fi].fa;
}
crl[++crt]=p[st].mxc;
for(int i=;i<crt;i++)
crl[crt+i]=crl[i];
h=t=;
q[]=;
int ln=crt/;
for(int i=;i<=crt+ln;i++)
{
while(h<=t&&i-q[h]>ln)
h++;
ans=max(ans,crl[q[h]]+crl[i]+i-q[h]);
while(h<=t&&crl[q[t]]+i-q[t]<=crl[i])
t--;
q[++t]=i;
}
for(int i=;i<crt;i++)
{
p[st].mxc=max(p[st].mxc,crl[i]+min(i,crt-i));
}
}
void tarjan(int x)
{
p[x].dfn=p[x].low=++trc;
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(to==p[x].fa)continue;
if(!p[to].dfn)
{
p[to].fa=x;
tarjan(to);
p[x].low=min(p[x].low,p[to].low);
if(p[x].dfn<p[to].low)
{
ans=max(ans,p[x].mxc+p[to].mxc+);
p[x].mxc=max(p[x].mxc,p[to].mxc+);
}
}else{
p[x].low=min(p[x].low,p[to].low);
}
}
for(int i=p[x].hd;i;i=e[i].lst)
{
int to=e[i].twd;
if(p[to].fa!=x&&p[to].dfn>p[x].dfn)
{
ringbrk(x,to);
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int frm,twd,nm;
scanf("%d%d",&nm,&frm);
for(int j=;j<nm;j++)
{
scanf("%d",&twd);
ade(twd,frm);
ade(frm,twd);
frm=twd;
}
}
tarjan();
printf("%d\n",ans);
return ;
}

BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌)的更多相关文章

  1. bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...

  2. BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点 ...

  3. BZOJ1023: [SHOI2008]cactus仙人掌图(仙人掌dp)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3467  Solved: 1438[Submit][Status][Discuss] Descripti ...

  4. BZOJ1023[SHOI2008]cactus仙人掌图 【仙人掌DP】

    题目 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌 图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路. 举例来说 ...

  5. [bzoj1023][SHOI2008]cactus 仙人掌图 (动态规划)

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回 ...

  6. bzoj1023: [SHOI2008]cactus仙人掌图

    学习了一下圆方树. 圆方树是一种可以处理仙人掌的数据结构,具体见这里:http://immortalco.blog.uoj.ac/blog/1955 简单来讲它是这么做的:用tarjan找环,然后对每 ...

  7. 2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)

    传送门 求仙人掌的直径. 感觉不是很难. 分点在环上面和不在环上分类讨论. 不在环上直接树形dpdpdp. 然后如果在环上讨论一波. 首先对环的祖先有贡献的只有环上dfsdfsdfs序最小的点. 对答 ...

  8. bzoj1023 [SHOI2008]cactus仙人掌图 & poj3567 Cactus Reloaded——求仙人掌直径

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1023    http://poj.org/problem?id=3567 仙人掌!直接模仿 ...

  9. bzoj千题计划224:bzoj1023: [SHOI2008]cactus仙人掌图

    又写了一遍,发出来做个记录 #include<cstdio> #include<algorithm> #include<iostream> using namesp ...

随机推荐

  1. c++动态库中使用命名空间的问题

    这是C++才会有的语言特性. 假如你使用一个程序库,他里面有桓霰淞拷衋bc,可是你自己也不小心定义了一个叫abc的变量,这样就会引起重定义错误.所以为了避免这样的现象,C++引入了名字空间(names ...

  2. How to search Installed Updates

    Windows本身的控制面板中自带的搜索,无法根据补丁编号进行搜索 可以将补丁信息导出到文本,再用文本编辑器进行查找 https://www.concurrency.com/blog/w/search ...

  3. 机器学习(三) Jupyter Notebook, numpy和matplotlib的详细使用 (下)

    七.Numpy中的矩阵运算 八.Numpy中的聚合运算 九.Numpy中的arg运算 十.Numpy中的比较和Fancy Indexing 十一.Matplotlib数据可视化基础 十二.数据加载和简 ...

  4. 学习推荐《精通Python网络爬虫:核心技术、框架与项目实战》中文PDF+源代码

    随着大数据时代的到来,我们经常需要在海量数据的互联网环境中搜集一些特定的数据并对其进行分析,我们可以使用网络爬虫对这些特定的数据进行爬取,并对一些无关的数据进行过滤,将目标数据筛选出来.对特定的数据进 ...

  5. Yeslab华为安全HCIE七门之-防火墙UTM技术(5篇)

    课程目录:     华为安全HCIE-第四门-防火墙UTM技术(5篇)\1_内容安全_内容过滤.avi 华为安全HCIE-第四门-防火墙UTM技术(5篇)\2_内容安全-url过滤.avi 华为安全H ...

  6. HDU 4975 A simple Gaussian elimination problem.

    A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...

  7. Activiti工作流框架学习(二)——使用Activiti提供的API完成流程操作

    可以在项目中加入log4j,将logj4.properties文件拷入到src目录下,这样框架执行的sql就可以输出到到控制台,log4j提供的日志级别有以下几种: Fatal  error  war ...

  8. Linux中去除windows文件中的控制字符

    Windows下的文本文件拿到Linux下时,会在文本行最后面出现很多字符:^M Linux下去除掉的方法是:dos2unix file(需要软件包dos2unix) 当然逆转的方法为unix2dos ...

  9. GO语言为结构体排序

    package main import ( "fmt" "io/ioutil" "sort" "time" ) type ...

  10. 自编Photoshop简单教程

    由于本科时对图形图像比較感兴趣所以Ps和Ai玩的还算能够.所以无论本科时候还是研究生阶段总是有非常多人让我帮忙处理一些图片.记得工作那一年參与一个大项目时还帮了CRI里员工处理了一些图片项目中也处理了 ...