2013长春赛区网络赛的1009题

比赛的时候这道题英勇的挂掉了,原因是写错了一个系数,有时候粗心比脑残更可怕

本题是关于Bell数,关于Bell数的详情请见维基:http://en.wikipedia.org/wiki/Bell_number

其中有一句话是这么说的: And they satisfy "Touchard's congruence": If p is any prime bumber then

但95041567不是素数, 分解之后发现 95041567 = 31 × 37 × 41 × 43 × 47

按照上述递推式,利用矩阵快速幂可以得到 Bmod p, (p = 31, 37, 41, 43, 47),因为p最大47,所以矩阵快速幂O(p^3 * log(n/p))不会超时,

当然要先利用以下公式把B1-B47预处理出来:

得到5个Bmod p (p = 31, 37, 41, 43, 47)之后,怎样得到Bmod  Πp 呢?

利用中国剩余定理可以完美的解决上述问题

详情见代码:

#include <cstdio>
#include <cstring> #define MOD 95041567
#define LL long long const int maxn = 50; //必须加 const,否则编译错误
LL x[5] = {31, 37, 41, 43, 47};
LL X; class Matrix {
public:
LL val[maxn][maxn];
Matrix() {
memset(val, 0, sizeof(val));
} Matrix operator*(const Matrix& c) const {
Matrix res;
for (int i = 0; i < X; ++i)
for (int j = 0; j < X; ++j)
for (int k = 0; k < X; ++k) {
res.val[i][j] += val[i][k] * c.val[k][j];
res.val[i][j] = (res.val[i][j] + X) % X; //防止矩阵元素变为负数,若不需要,去掉"+MOD"
}
return res;
} Matrix operator*=(const Matrix& c) {
*this = *this * c;
return *this;
} Matrix Pow(LL k) { //返回one^k
Matrix res = Zero();
Matrix step = One();
while (k) {
if (k & 1)
res *= step;
k >>= 1;
step *= step;
}
return res;
} Matrix Zero() const {
Matrix res;
for (int i = 0; i < X; ++i)
res.val[i][i] = 1;
return res;
} Matrix One() const {
Matrix res;
for (int i = 0; i < X - 1; ++i)
res.val[i][i] = res.val[i + 1][i] = 1;
res.val[0][X - 1] = res.val[1][X - 1] = res.val[X - 1][X - 1] = 1;
return res;
}
}; void gcd(LL a, LL b, LL& d, LL& xx, LL& y) {
if (!b) {
d = a, xx = 1, y = 0;
} else {
gcd(b, a % b, d, y, xx);
y -= xx * (a / b);
}
} LL china(LL n, LL* a, LL* m) {
LL M = 1, d, xx = 0, y;
for (int i = 0; i < n; ++i) M *= m[i];
for (int i = 0; i < n; ++i) {
LL w = M / m[i];
gcd(m[i], w, d, d, y);
xx = (xx + y * w * a[i]) % M;
}
return (xx + M) % M;
} LL c[50][50], f[50], a[5]; int main() {
int T;
for (int i = 0; i < 50; ++i) {
c[i][0] = c[i][i] = 1;
for (int j = 1; j < i; ++j)
c[i][j] = (c[i-1][j] + c[i - 1][j - 1]) % MOD;
}
f[0] = 1;
f[1] = 1;
for (int i = 2; i < 50; ++i) {
for (int j = 0; j < i; ++j)
f[i] = (f[i] + c[i - 1][j] * f[j]) % MOD;
}
scanf("%d", &T);
while (T--) {
LL n;
scanf("%I64d", &n);
if (n < 50) {
printf("%I64d\n", f[n]);
continue;
}
memset(a, 0 ,sizeof(a));
for (int i = 0; i < 5; ++i) {
X = x[i];
Matrix m;
m = m.Pow(n / X);
for (int j = 0; j < X; ++j)
a[i] = (a[i] + f[j] * m.val[j][n % X]) % X;
}
printf("%I64d\n", china(5, a, x));
}
return 0;
}

  

hdu4767_Bell_矩阵快速幂+中国剩余定理的更多相关文章

  1. HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)

    传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...

  2. hdu 4549 M斐波拉契 (矩阵快速幂 + 费马小定理)

    Problem DescriptionM斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在 ...

  3. M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  4. hdu4549矩阵快速幂+费马小定理

    转移矩阵很容易求就是|0  1|,第一项是|0| |1  1|             |1| 然后直接矩阵快速幂,要用到费马小定理 :假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(m ...

  5. HDU 4549 M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submi ...

  6. 2017中国大学生程序设计竞赛 - 女生专场 Happy Necklace(递推+矩阵快速幂)

    Happy Necklace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) ...

  7. HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)

    M斐波那契数列 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  8. HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂

    题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Li ...

  9. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

随机推荐

  1. 【34.40%】【codeforces 711D】Directed Roads

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  2. wpf中xaml的类型转换器与标记扩展

    原文:wpf中xaml的类型转换器与标记扩展 这篇来讲wpf控件属性的类型转换器 类型转换器 类型转换器在asp.net控件中已经有使用过了,由于wpf的界面是可以由xaml组成的,所以标签的便利也需 ...

  3. JavaScript严谨模式(Strict Mode)提升开发效率和质量

    http://flandycheng.blog.51cto.com/855176/982719 http://my.oschina.net/Jsiwa/blog/272761

  4. 转载来自朱小厮博客的 一文看懂Kafka消息格式的演变

    转载来自朱小厮博客的 一文看懂Kafka消息格式的演变     ✎摘要 对于一个成熟的消息中间件而言,消息格式不仅关系到功能维度的扩展,还牵涉到性能维度的优化.随着Kafka的迅猛发展,其消息格式也在 ...

  5. C#实现通过拼多多分享微信公众号实现查询优惠券、佣金比率

    主要实现功能:关注公众号的用户发送拼多多商品链接,后台程序通过链接查找商品优惠券或返佣情况. 说明:使用了niltor 封装的拼多多接口 github地址 ,但是需要注意可能会存在返回模型无法正确解析 ...

  6. Layui 2.0.0 正式发布:潜心之作,开箱即用的前端UI框架(确实很多内容)

    Hi,久违了.处暑逼近之际,潜水半年的 layui 是时候出来透透气了.我们带来的是全新的 2.0 版本,一次被我们定义为“破茧重生”的倾情之作.如果你已曾用过 layui,你将真正感受到一次因小而大 ...

  7. 【转载】FusionSphere架构详解

    FusionSphere底层使用Xen架构: 1.单台物理机上建立hypervisor系统. 2.将所有单个hypervisor系统整合起来管理使用. 安装CNA节点,所有的物理服务器都会先成为CNA ...

  8. 就服务器项目部署debug谈谈自己的感受

    前言 学校小组Project那些外国人啥也不会, 基本上我一个人全包了前端和后端, 说实话这些天来也感受到了写一个比较拿得出手的web确实也不是这么容易的, 特别是我没什么项目经验, 很多时候碰到问题 ...

  9. Expander

    实现折叠列表的效果 <Expander Header="水果列表"> <StackPanel> <RadioButton Content=" ...

  10. 一个由单例模式在多线程环境下引发的 bug

    问题症状 HTTP 日志系统,老是出现日志信息覆盖的情况.比如同时调用 A 接口和 B 接口,B 接口请求响应信息变成了 A 接口请求响应相关信息.这个问题在并发量大的情况下越来越严重. 问题初步分析 ...