谈到分布式系统,就不得不提Google的三驾马车:Google fs[1],Mapreduce[2],Bigtable[3]。

虽然Google没有公布这三个产品的源码,但是他发布了这三个产品的详细设计论文。而且,Yahoo资助的Hadoop也有按照这三篇论文的开源Java实现:Hadoop对应Mapreduce, Hadoop Distributed File System (HDFS)对应Google fs,Hbase对应Bigtable。不过在性能上Hadoop比Google要差很多,参见表1。

Experiment

HBase20070916

BigTable

random reads

272

1212

random reads (mem)

Not implemented

10811

random writes

1460

8850

sequential reads

267

4425

sequential writes

1278

8547

Scans

3692

15385

表1。Hbase和BigTable性能比较(来源于http://wiki.apache.org/lucene-hadoop/Hbase/PerformanceEvaluation)

以下分别介绍这三个产品:

Google fs

GFS是一个可扩展的分布式文件系统,用于大型的、分布式的、对大量数据进行访问的应用。它运行于廉价的普通硬件上,提供容错功能

  图1 GFS Architecture

  (1)GFS的结构

  1. GFS的结构图见图1,由一个master和大量的chunkserver构成,

  2. 不像Amazon Dynamo的没有主的设计,Google设置一个主来保存目录和索引信息,这是为了简化系统结果,提高性能来考虑的,但是这就会造成主成为单点故障或者瓶颈。为了消除主的单点故障Google把每个chunk设置的很大(64M),这样,由于代码访问数据的本地性,application端和master的交互会减少,而主要数据流量都是Application和chunkserver之间的访问。

  3. 另外,master所有信息都存储在内存里,启动时信息从chunkserver中获取。提高了master的性能和吞吐量,也有利于master当掉后,很容易把后备j机器切换成master。

  4. 客户端和chunkserver都不对文件数据单独做缓存,只是用linux文件系统自己的缓存

  “The master stores three major types of metadata: the file and chunk namespaces, the mapping from files to chunks, and the locations of each chunk’s replicas.”

  “Having a single master vastly simplifies our design and enables the master to make sophisticated chunk placement and replication decisions using global knowledge. However,we must minimize its involvement in reads and writes so that it does not become a bottleneck. Clients never read and write file data through the master. Instead, a client asks the master which chunkservers it should contact. It caches this information for a limited time and interacts with the chunkservers directly for many subsequent operations.”

  “Neither the client nor the chunkserver caches file data.Client caches offer little benefit because most applications stream through huge files or have working sets too large to be cached. Not having them simplifies the client and the overall system by eliminating cache coherence issues.(Clients do cache metadata, however.) Chunkservers need not cache file data because chunks are stored as local files and so Linux’s buffer cache already keeps frequently accessed data in memory.”

  (2)GFS的复制

  GFS典型的复制到3台机器上,参看图2

图2 一次写操作的控制流和数据流

  (3) 对外的接口

  和文件系统类似,GFS对外提供create, delete,open, close, read, 和 write 操作。另外,GFS还新增了两个接口snapshot and record append,snapshot。有关snapshot的解释:

  “Moreover, GFS has snapshot and record append operations. Snapshot creates a copy of a file or a directory tree at low cost.

Record append allows multiple clients to append data to the same file concurrently while guaranteeing the atomicity of each individual client’s append.”

2. MapReduce

  MapReduce是针对分布式并行计算的一套编程模型。

  讲到并行计算,就不能不谈到微软的Herb Sutter在2005年发表的文章” The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software”[6],主要意思是通过提高cpu主频的方式来提高程序的性能很快就要过去了,cpu的设计方向也主要是多核,超线程等并发上。但是以前的程序并不能自动的得到多核的好处,只有编写并发程序,才能真正获得多核的好处。分布式计算也是一样。

图3 MapReduce Execution overview

  1)MapReduce是由Map和reduce组成,来自于Lisp,Map是影射,把指令分发到多个worker上去,Reduce是规约,把Map的worker计算出来的结果合并。(参见图3)

  2)Google的MapReduce实现使用GFS存储数据。

  3)MapReduce可用于Distributed Grep,Count of URL Access Frequency,ReverseWeb-Link Graph,Distributed Sort,Inverted Index

3. Bigtable

  就像文件系统需要数据库来存储结构化数据一样,GFS也需要Bigtable来存储结构化数据。

  1)BigTable 是建立在 GFS ,Scheduler ,Lock Service 和 MapReduce 之上的。

  2)每个Table都是一个多维的稀疏图

  3)为了管理巨大的Table,把Table根据行分割,这些分割后的数据统称为:Tablets。每个Tablets大概有 100-200 MB,每个机器存储100个左右的 Tablets。底层的架构是:GFS。由于GFS是一种分布式的文件系统,采用Tablets的机制后,可以获得很好的负载均衡。比如:可以把经常响应的表移动到其他空闲机器上,然后快速重建。

参考文献

  [1]The Google File System; http://labs.google.com/papers/gfs-sosp2003.pdf

  [2]MapReduce: Simplifed Data Processing on Large Clusters; http://labs.google.com/papers/mapreduce-osdi04.pdf

  [3]Bigtable: A Distributed Storage System for Structured Data;http://labs.google.com/papers/bigtable-osdi06.pdf

  [4]Hadoop ; http://lucene.apache.org/hadoop/

  [5]Hbase: Bigtable-like structured storage for Hadoop HDFS;http://wiki.apache.org/lucene-hadoop/Hbase

  [6]The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software;http://www.gotw.ca/publications/concurrency-ddj.htm

Google三驾马车:GFS、MapReduce和Bigtable的更多相关文章

  1. 分布式系统漫谈一 —— Google三驾马车: GFS,mapreduce,Bigtable

    分布式系统学习必读文章!!!! 原文:http://blog.sina.com.cn/s/blog_4ed630e801000bi3.html 分布式系统漫谈一 —— Google三驾马车: GFS, ...

  2. Google三驾马车

    Google旧三驾马车: GFS,mapreduce,Bigtable http://blog.sina.com.cn/s/blog_4ed630e801000bi3.html Google新三驾马车 ...

  3. [MapReduce] Google三驾马车:GFS、MapReduce和Bigtable

    声明:此文转载自博客开发团队的博客,尊重原创工作.该文适合学分布式系统之前,作为背景介绍来读. 谈到分布式系统,就不得不提Google的三驾马车:Google FS[1],MapReduce[2],B ...

  4. 【技术与商业案例解读笔记】095:Google大数据三驾马车笔记

     1.谷歌三驾马车地位 [关键词]开启时代,指明方向 聊起大数据,我们通常言必称谷歌,谷歌有“三驾马车”:谷歌文件系统(GFS).MapReduce和BigTable.谷歌的“三驾马车”开启了大数据时 ...

  5. Childlife旗下三驾马车

    Childlife旗下,尤其以 “提高免疫力”为口号的“三驾马车”:第一防御液.VC.紫雏菊,是相当热门的海淘产品.据说这是一系列“成分天然.有效治愈感冒提升免疫力.由美国著名儿科医生研发”的药物.

  6. Ubuntu 安装 k8s 三驾马车 kubelet kubeadm kubectl

    Ubuntu 版本是 18.04 ,用的是阿里云服务器,记录一下自己实际安装过程的操作步骤. 安装 docker 安装所需的软件 apt-get update apt-get install -y a ...

  7. 更强、更稳、更高效:解读 etcd 技术升级的三驾马车

    点击下载<不一样的 双11 技术:阿里巴巴经济体云原生实践> 本文节选自<不一样的 双11 技术:阿里巴巴经济体云原生实践>一书,点击上方图片即可下载! 作者 | 陈星宇(宇慕 ...

  8. Google 云计算中的 GFS 体系结构

          google 公司的很多业务具有数据量巨大的特点,为此,google 公司研发了云计算技术.google 云计 算结构中的 google 文件系统是其云计算技术中的三大法宝之一.本文主要介 ...

  9. Google的三大马车

    Google的三大马车Google fs + Map Reduce + Big Table 开源Java实现HDFS Hadoop Hbase 云盘实现用廉价的服务器提供与万级的数据库存储①廉价的服务 ...

随机推荐

  1. git安装使用详解

    Git是分布式版本控制系统,那么它就没有中央服务器的,每个人的电脑就是一个完整的版本库,这样,工作的时候就不 需要联网了,因为版本都是在自己的电脑上.既然每个人的电脑都有一个完整的版本库,那多个人如何 ...

  2. 11991 - Easy Problem from Rujia Liu?(的基础数据结构)

    UVA 11991 - Easy Problem from Rujia Liu? 题目链接 题意:给一个长度n的序列,有m询问,每一个询问会问第k个出现的数字的下标是多少 思路:用map和vector ...

  3. Xcode 4.5( iOS6 SDK)、旧版本号cocos2d,支持iPhone5解析度

    支持iPhone5全屏 1假设没有支持iPhone5是否.直接运行程序可以准备提交.开放iPhone5模拟器,你会发现上面有黑色的程序.没有矩形. 2真正运行该程序时,.你会发现程序回程屏幕高度.它是 ...

  4. 【cocos2d-js官方文档】五、Cocos2d-JS v3.0的新Action API

    新增action中的方法 曾经,当我们须要反复一个action的时候,我们须要: sprite.runAction(cc.Repeat.create(action, 2)); 上面代码中创建了一个新的 ...

  5. zedboard之GPIO驱动器(离FPGA直到LINUX申请书)

    笔者:xiabodan   资源: http://blog.csdn.net/xiabodan/article/details/24308373 1 EDK 大家知道我们在EDK中建立GPIO然后倒出 ...

  6. WPF中使用TranslateTransform3D修改CAD的3D旋转中心

    原文:WPF中使用TranslateTransform3D修改CAD的3D旋转中心        前面一篇文章讲述了2D旋转功能的实现,文章提到了修改3D旋转中心,这一节主要总结一下具体的修改3D旋转 ...

  7. mongodb与SQL对应关系表

    1. select查询 mongodb使用find要么findOne要查询: find批量查询. findOne查询记录. find有两个参数: 查询条件. 第二个查询返回的字段. 以下是mongod ...

  8. WPF的Timer控件的使用

    原文:WPF的Timer控件的使用 通过System.Threaing.Timer控件来实现“初始加载页面时为DataGrid的模版列赋初始值” System.Threaing.Timer的用法: 步 ...

  9. WPF 通过CommandBinding捕获命令

    RoutedCommand与业务逻辑无关,业务逻辑是通过CommandBinding来实现 using System; using System.Collections.Generic;using S ...

  10. WPF 柱状图显示数据

    <Window x:Class="Wpf180706.Window9"        xmlns="http://schemas.microsoft.com/win ...