Tags: Caffe

Categories: Tools/Wheels

1. 将caffe训练时将屏幕输出定向到文本文件

caffe中自带可以画图的工具,在caffe路径下:

./tools/extra/parse_log.sh

./tools/extra/extract_seconds.py

./tools/extra/plot_training_log.py.example

  1. 日志重定向:在训练命令中加入一行参数,实现log日志定向到文件:

    caffe train --sover=/path/to/solver >log/***.log 2>&1
  2. 解析训练数据

    将前面说的三个脚本拷贝到log文件下

    sh parse_log.sh xxxx.log
  3. 生成图片

    python plot_traning_log.py [0-7] save.png xxxx.log

可以选择的各种图类型:

2. 均值文件计算和转换

c++中使用的是.binaryproto格式,python中使用的是.npy格式,因此会经常遇到二者之间相互转化的时候。

python .npy > .binaryproto

import caffe
import numpy as np MEAN_PROTO_PATH = 'mean.binaryproto' # 待转换的pb格式图像均值文件路径
MEAN_NPY_PATH = 'mean.npy' # 转换后的numpy格式图像均值文件路径 blob = caffe.proto.caffe_pb2.BlobProto() # 创建protobuf blob
data = open(MEAN_PROTO_PATH, 'rb' ).read() # 读入mean.binaryproto文件内容
blob.ParseFromString(data) # 解析文件内容到blob array = np.array(caffe.io.blobproto_to_array(blob))# 将blob中的均值转换成numpy格式,array的shape (mean_number,channel, hight, width)
mean_npy = array[0] # 一个array中可以有多组均值存在,故需要通过下标选择其中一组均值
np.save(MEAN_NPY_PATH ,mean_npy)

已知图像均值构造mean.npy

import numpy as np

MEAN_NPY_PATH = 'mean.npy'

mean = np.ones([3,256, 256], dtype=np.float)
mean[0,:,:] = 104
mean[1,:,:] = 117
mean[2,:,:] = 123 np.save(MEAN_NPY, mean)

3. 训练文件solver的配置

solver文件是协调整个模型运作的文件,里面可以配置迭代次数,训练策略,学习率的更新策略,训练 多少次测试一次,使用GPU还是CPU等等.

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU

net: 网络模型,网络模型中可以同时配置train和test model

test_iter: 遍历整个test数据集的次数

test_iterval: 训练迭代多少次进行一次测试(一般是遍历完一次训练集进行一次测试)

display: 迭代多少次将记录输出到屏幕

max_iter: 最大训练迭代次数

snapshot: 多少次保存训练的caffemodel和solverstate

snapshot_prefix: 中间文件保存地址

solver_mode: 使用GPU/还是CPU

debug_info:是否将网络每一层的数据输出到屏幕,这个在调试的时候很有用

type: 求解算法,SGD/AdaDelta/AdaGrad/Nesterov/Adam/RMSProp

solver配置的官方详细介绍:

https://github.com/BVLC/caffe/wiki/Solver-Prototxt

4. 在solver 文件中设置debug_infor: true可以看见网络的forward and backward propagation, 可以根据权值和微分计算,帮助调参

how to interprete caffe log with debug_info?

https://stackoverflow.com/questions/40510706/how-to-interpret-caffe-log-with-debug-info

[caffe] caffe训练tricks的更多相关文章

  1. caffe绘制训练过程的loss和accuracy曲线

    转自:http://blog.csdn.net/u013078356/article/details/51154847 在caffe的训练过程中,大家难免想图形化自己的训练数据,以便更好的展示结果.如 ...

  2. cudnn升级之后caffe无法训练的问题

    由于安装新版本的TensorFlow需要cudnn6.0因此用6.0将原来的 5.0替换了,后来又用之前编译好的caffe进行训练,发现caffe会去找5.0的cudnn,然后就报错了,不能正常训练. ...

  3. caffe 如何训练自己的数据图片

    申明:此教程加工于caffe 如何训练自己的数据图片 一.准备数据 有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载im ...

  4. Windows平台上Caffe的训练与学习方法(以数据库CIFAR-10为例)

    Windows平台上Caffe的训练与学习方法(以数据库CIFAR-10为例) 在完成winodws平台上的caffe环境的搭建之后,亟待掌握的就是如何在caffe中进行训练与学习,下面将进行简单的介 ...

  5. caffe下训练时遇到的一些问题汇总

    1.报错:“db_lmdb.hpp:14] Check failed:mdb_status ==0(112 vs.0)磁盘空间不足.” 这问题是由于lmdb在windows下无法使用lmdb的库,所以 ...

  6. CAFFE中训练与使用阶段网络设计的不同

    神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使 ...

  7. Caffe框架,训练model并测试数据

    1. 训练model #!/usr/bin/env sh ./build/tools/caffe train --solver=examples/focal_length/focal_solver.p ...

  8. 深度学习—caffe框架训练文档

    转存:LMDB E:\机器学习2\caffe资料\caffe_root\caffe-master\Build\x64\Release>convert_imageset.exe E:/机器学习2/ ...

  9. caffe 预训练 或者Fine-Tuning 操作

    1.使用预训练模型,需要修改训练的prototxt,将layer name改为与要使用模型的layer name相同即可. Borrowing Weights from a Pretrained Ne ...

随机推荐

  1. Android获取设备屏幕宽高像素值的两个方法

    private void get1() { Resources resources = this.getResources(); DisplayMetrics dm = resources.getDi ...

  2. 听说”双11”是这么解决线上bug的

    听说"双11"是这么解决线上bug的 --Android线上热修复的使用与原理 预备知识和开发环境 Android NDK编程 AndFix浅析 Android线上热修复的原理大同 ...

  3. 用SecureCRT在linux系统下载文件

    使用sz命令 说明如下: sz --helpsz version 0.12.20Usage: sz [options] file ...   or: sz [options] -{c|i} COMMA ...

  4. 关于move_uploaded_file()出错的问题

    move_upload0ed_file()函数返回參数较少.可是引起出错的原因却有非常多,所以对于刚開始学习的人难免会遇到问题. 出错原因大概有下面三点: 1.假设检測到文件不是来自post上传.这个 ...

  5. HDU3535 AreYouBusy 混合背包

    题目大意 给出几组物品的体积和价值,每组分为三种:0.组内物品至少选一个:1.组内物品最多选一个:2.组内物品任意选.给出背包容量,求所能得到的最大价值. 注意 仔细审题,把样例好好看完了再答题,否则 ...

  6. hdoj---Rescue

    Rescue Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submis ...

  7. 【JSOI 2008】 球形空间产生器

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1013 [算法] 高斯消元 [代码] #include<bits/stdc++. ...

  8. C#关于XML的一些简单用法

    关于XML文件的用法,本文简单介绍创建.读取和增删操作 . 1.创建有三种方法 (1)通过XmlDocument创建,然后分级添加子目录 XmlDocument doc = new XmlDocume ...

  9. 康少带你玩转JavaScript

    目录 1.JavaScript简述 2.JavaScript引入方式 3.JavaScript语法基础 4.JavaScript数据类型 5.运算符 6.流程控制 7.函数 8.内置对象和方法 1.J ...

  10. 使用C语言扩展Python3

    使用C语言扩展Python3.在Python3中正确调用C函数. 1. 文件demo.c #include <Python.h> // c function static PyObject ...