UVa10791 - Minimum Sum LCM
分析即为紫薯上的分析。
难点是发现当每个aipi作为一个单独的整数时才最优。。
答案就是将所有不同的 相同因子的积 相加即可
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<list>
#include<string>
#include<cmath>
#include<sstream>
#include<ctime>
#define _PI acos(-1.0)
#define INF 1 << 10
#define esp 1e-6
typedef long long LL;
typedef unsigned long long ULL;
using namespace std;
/*===========================================
===========================================*/
LL v[];
LL vt=;
int decPrime(LL n){
LL m=(LL)sqrt(n+0.5);
vt=;
for (LL i=;i<=m&&n>;i++){
if (!(n%i)){
LL tmp=;
while (!(n%i)&&n>){
tmp*=i;n/=i;
}
v[vt++]=tmp;
}
}
if (n>) v[vt++]=n;
}
LL n;
int T=;
int main(){
while (cin>>n&&n){
T++;
LL ans=;
decPrime(n);
if (vt==||vt==) ans=n+;
else for(int i=; i<vt; i++)
ans+=v[i];
cout<<"Case "<<T<<": ";
cout<<ans<<endl;
}
}
UVa10791 - Minimum Sum LCM的更多相关文章
- 题解:UVA10791 Minimum Sum LCM
原题 题目大意 输入整数\(n(1\le n<2^{31})\) ,求至少两个正整数,是它们的最小公倍数为$ n$,且这些整数的和最小.输出最小的和. 有多组测试输入,以\(0\)结束. 题解 ...
- Minimum Sum LCM(uva10791+和最小的LCM+推理)
L - Minimum Sum LCM Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submi ...
- UVA.10791 Minimum Sum LCM (唯一分解定理)
UVA.10791 Minimum Sum LCM (唯一分解定理) 题意分析 也是利用唯一分解定理,但是要注意,分解的时候要循环(sqrt(num+1))次,并要对最后的num结果进行判断. 代码总 ...
- F - Minimum Sum LCM
LCM (Least Common Multiple) of a set of integers is defined as the minimum number, which is a multip ...
- UVA 10791 Minimum Sum LCM(分解质因数)
最大公倍数的最小和 题意: 给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 那么找出一个序列,使他们的和最小. 分析: 一系列数字a1,a2,a3 ...
- 数论-质因数(gcd) UVa 10791 - Minimum Sum LCM
https://vjudge.net/problem/UVA-10791/origin 以上为题目来源Google翻译得到的题意: 一组整数的LCM(最小公倍数)定义为最小数,即 该集合的所有整数的倍 ...
- UVa 10791 Minimum Sum LCM【唯一分解定理】
题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...
- Minimum Sum LCM UVA - 10791(分解质因子)
对于一个数n 设它有两个不是互质的因子a和b 即lcm(a,b) = n 且gcd为a和b的最大公约数 则n = a/gcd * b: 因为a/gcd 与 b 的最大公约数也是n 且 a/gcd ...
- Minimum Sum LCM(uva 10791)
题意(就是因为读错题意而wa了一次):给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 例如12,是1和12的最小公倍数,是3和4的最小公倍数,是1 ...
随机推荐
- 201521123027 《JAVA程序设计》第四周学习总结
1.本周学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 1.2 使用常规方法总结其他上课内容. ①多态:相同方法名,不同实现: ②instanceof运算符:判断父类引用所引用的对象实例的实 ...
- Java-TreeSet的用法-入门
Java语言中,Set接口有3种通用实现:HashSet, TreeSet,LinkedHashSet.TreeSet是一种能够对内部元素进行排序的集合,它使用红黑树来存储内部元素,基于元素的值进行排 ...
- 201521044091 java 第十周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. Runnable不是线程,Thread才是,必须将实现Runnable接口的类的对象放入Thread中才能在 ...
- 201521123102 《Java程序设计》第12周学习总结
1.本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2.书面作业 将Student对象(属性:int id, String name,int age,double ...
- String,StringBuffer,StringBuilder的区别及其源码分析
String,StringBuffer,StringBuilder的区别这个问题几乎是面试必问的题,这里做了一些总结: 1.先来分析一下这三个类之间的关系 乍一看它们都是用于处理字符串的java类,而 ...
- 关于ios::sync_with_stdio(false)
作用就是取消同步,这样的话使用cin就和使用scanf效率相似. 但是今天在做题的时候碰到一点小问题,就是在关闭同步的时候使用scanf是交了一发代码,然后RE了(经检查scanf没有写错),而把关同 ...
- iOS开发-AFNetworking参数和多文件同时上传【多文件上传】
1. 前言 在项目开发中,我们经常需要上传文件,例如:上传图片,上传各种文件,而有时也需要将参数和多个文件一起上传,不知道大家的项目中遇到了没有,我在最近的项目中,就需要这样的一个功能:同时上传参数. ...
- 已被.NET基金会认可的弹性和瞬态故障处理库Polly介绍
前言 本节我们来介绍一款强大的库Polly,Polly是一种.NET弹性和瞬态故障处理库,允许我们以非常顺畅和线程安全的方式来执诸如行重试,断路,超时,故障恢复等策略. Polly针对对.NET 4. ...
- program 1 : python codes for login program(登录程序python代码)
#improt time module for count down puase time import time #set var for loop counting counter=1 #logi ...
- WPF布局控件与子控件的HorizontalAlignment/VerticalAlignment属性之间的关系
WPF布局控件与子控件的HorizontalAlignment/VerticalAlignment属性之间的关系: 1.Canvas/WrapPanel控件: 其子控件的HorizontalAlign ...