BZOJ 3782: 上学路 Lucas+ExCRT+容斥+dp
其实呢,扩展中国剩余定理还有一种理解方式:就是你有一坨东西,形如:
$A[i]\equiv B[i](mod$ $P[i])$.
对于这个东西,你可以这么思考:
如果最后能求出一个解,那么这个解的增量一定是 $lcm(P[1],P[2].....).$
所以,只要你能找到一坨 $P[i]$,使得它们的 $lcm$ 等于你想要的东西,你就可以用 $excrt$来解.
p话扯完了,我们步入正题:
假设没有障碍,有 $n$ 行 $m$ 列,那么答案即为 $C_{n+m}^{n}.$
这个东西就代表你一共会走 $n+m$ 步,其中 $n$ 步的方向是向上的.
而如果有障碍,我们考虑按照每一个障碍点一次枚举.
首先,将障碍按照横纵坐标从小到大拍一个序,那么考虑我们枚举到第 $i$ 个障碍.
令 $f[i]$ 表示从起点到第 $i$ 个障碍所走过的合法的方案数,$(x,y)$ 表示横纵坐标.
总方案为 $C_{x+y}^{y},$ 不合法的方案为 $\sum f[前面障碍]$.
如果随便减的话,我们可能减多,所以我们考虑按照策略去减.
我们想让每一次减掉的都互不相同,所以我们考虑枚举第一个不合法的障碍.
即 $C_{x+y}^{y}-\sum_{j=1}^{i-1}f[j]\times calc(j到i的方案数).$
这样,我们等于说是强制性的每次只减掉第一个障碍碰到 $j$ 的方案数,不会减多.
这个题的模数不是素数,所以需要将模数分解成若干个素数,然后依次取模,最后在用 $excrt$ 合并.
Code:
#include <cstdio>
#include <algorithm>
#define N 1000006
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
ll F[N];
int array[10]={0,3,5,6793,10007};
struct Node {
ll x,y;
Node(ll x=0,ll y=0):x(x),y(y){}
}arr[N];
bool cmp(Node a,Node b) {
return a.x==b.x?a.y<b.y:a.x<b.x;
}
ll qpow(ll base,ll k,ll mod) {
ll tmp=1;
for(;k;k>>=1,base=base*base%mod)
if(k&1) tmp=tmp*base%mod;
return tmp;
}
struct Lucas {
int mod;
int fac[N];
int inv(int i) {
return (int)qpow(i,mod-2,mod);
}
void init(int p) {
mod=p,fac[0]=1;
for(int i=1;i<=mod;++i) fac[i]=(ll)fac[i-1]*i%mod;
}
int C(int x,int y) {
if(y>x) return 0;
if(y==0) return 1;
return (int)(1ll*fac[x]*inv(fac[y])%mod*inv(fac[x-y])%mod);
}
int solve(ll x,ll y) {
if(y>x) return 0;
if(y==0) return 1;
return (int)(1ll*solve(x/mod,y/mod)*C(x%mod,y%mod)%mod);
}
}comb[8];
struct excrt {
ll arr[N],brr[N];
ll exgcd(ll a,ll b,ll &x,ll &y) {
if(!b) {
x=1,y=0;
return a;
}
ll gcd=exgcd(b,a%b,x,y),tmp=x;
x=y,y=tmp-a/b*y;
return gcd;
}
ll Excrt() {
int i,j;
ll ans=arr[1],M=brr[1];
for(i=2;i<=4;++i) {
ll a=M,b=brr[i],c=arr[i]-ans,gcd,x,y;
gcd=exgcd(a,b,x,y),b=abs(b/gcd);
x=(x*(c/gcd)%b+b)%b;
ans+=M*x;
M*=brr[i]/__gcd(brr[i],M);
ans=(ans%M+M)%M;
}
return ans;
}
}crt;
ll C(ll a,ll b,int ty) {
if(ty==0)
return comb[0].solve(a,b);
else {
int i,j;
for(i=1;i<=4;++i) {
crt.arr[i]=comb[i].solve(a,b);
crt.brr[i]=array[i];
}
}
return crt.Excrt();
}
int main() {
int i,j,k,flag;
// setIO("input");
ll n,m,mod;
scanf("%lld%lld%d%lld",&n,&m,&k,&mod),flag=(mod==1019663265);
if(!flag) {
comb[0].init(mod);
}
else {
for(i=1;i<=4;++i)
comb[i].init(array[i]);
}
for(i=1;i<=k;++i)
scanf("%lld%lld",&arr[i].x,&arr[i].y);
arr[++k].x=n,arr[k].y=m;
sort(arr+1,arr+1+k,cmp);
for(i=1;i<=k;++i) {
F[i]=C(arr[i].x+arr[i].y,arr[i].y,flag);
for(j=1;j<i;++j) {
if(arr[j].y<=arr[i].y)
F[i]=(F[i]-(F[j]*C(arr[i].x-arr[j].x+arr[i].y-arr[j].y,arr[i].y-arr[j].y,flag)%mod)+mod)%mod;
}
}
printf("%lld\n",F[k]);
return 0;
}
BZOJ 3782: 上学路 Lucas+ExCRT+容斥+dp的更多相关文章
- bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp
LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=10000 ...
- BZOJ 3782: 上学路线 [Lucas定理 DP]
3782: 上学路线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 192 Solved: 75[Submit][Status][Discuss] ...
- bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...
- HDU 5794 A Simple Chess (容斥+DP+Lucas)
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...
- $bzoj2560$ 串珠子 容斥+$dp$
正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...
- [CF1086E]Beautiful Matrix(容斥+DP+树状数组)
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...
- 【BZOJ3622】已经没有什么好害怕的了 容斥+DP
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- BZOJ.4767.两双手(组合 容斥 DP)
题目链接 \(Description\) 棋盘上\((0,0)\)处有一个棋子.棋子只有两种走法,分别对应向量\((A_x,A_y),(B_x,B_y)\).同时棋盘上有\(n\)个障碍点\((x_i ...
- BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4493 Solved: 2695[Submit][Statu ...
随机推荐
- Docker——四种网络模式
docker run创建Docker容器时,可以用–net选项指定容器的网络模式,Docker有以下4种网络模式: bridge模式:使用–net =bridge指定,默认设置: host模式 ...
- hdu 1576
老生常谈的问题 利用同余的思想 抽象出表达式 bx+9973y=n 然后用bx+9973y=1(题目给出了gcd(b,9973)=1) 求出基础解 y0 bx+9973y=n 的 基础解y=n*y0 ...
- Java 时间不一致
1.new Date() 得到的时间?和系统相差 相差8个小时 2.eclipse控制台打印的时间与系统相差 相差8个小时 3.log4j日志的时间与与系统相差 相差8个小时 上述问题其实是同一个问题 ...
- Navicat连接CentOS7中的MariaDB
Step 1:首先登录数据库设置开启远程连接 mysql -u root -p Step 2:使用改表法实现远程连接 use mysql; update user set host = '%' whe ...
- O030、Launch 和 shut off 操作详解
参考https://www.cnblogs.com/CloudMan6/p/5460464.html 本节详细分析 instance launch 和 shut off 操作 ,以及如何在日志中快 ...
- js之数据类型(对象类型——构造器对象——对象)
JavaScript中除了原始类型,null,undefined之外就是对象了,对象是属性的集合,每个属性都是由键值对(值可以是原始值,比如说是数字,字符串,也可以是对象)构成的.对象又可分为构造器对 ...
- 微信小程序iOS下拉白屏晃动,坑坑坑
感觉ios的小程序每个页面都可以下拉出现白屏 有时页面带有滑动的属性会跟着晃动,体验不是很好 解决办法: 先禁止页面下拉 <config> { navigationBarTitleText ...
- Hyperledger Fabric(5)ChainCode的编写步骤
链码(chaincode) 会对 Fabric应用程序 发送的交易做出响应,执行代码逻辑,与 账本 进行交互. 再复习下他们之间的逻辑关系: Hyperledger Fabric 中,Chainco ...
- php 随笔 截取字符串 跳出循环 去除空格 修改上传文件大小限制
substr(string,start,length) echo substr("Hello world",6); world 跳出循环 for($i=1; $i<5; $i ...
- 纯净CentOS搭建harbor镜像私仓
物理宿主机IP: 192.168.1.4 在官网下载 CentOS-7-x86_64-DVD-1810 用Hyper-v建立一代虚机,安装时遇分辨率问题无法继续,需要在选择启动界面按TAB键以编辑启 ...