结巴分词和自然语言处理HanLP处理手记
手记实用系列文章:
3 自然语言处理手记
代码封装类:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import jieba
import os
import re
import time
from jpype import * '''
title:利用结巴分词进行文本语料的批量处理
1 首先对文本进行遍历查找
2 创建原始文本的保存结构
3 对原文本进行结巴分词和停用词处理
4 对预处理结果进行标准化格式,并保存原文件结构路径
author:白宁超
myblog:http://www.cnblogs.com/baiboy/
time:2017年4月28日10:03:09
''' '''
创建文件目录
path:根目录下创建子目录
'''
def mkdir(path):
# 判断路径是否存在
isExists=os.path.exists(path)
# 判断结果
if not isExists:
os.makedirs(path)
print(path+' 创建成功')
return True
else:
pass
print('-->请稍后,文本正在预处理中...') '''
结巴分词工具进行中文分词处理:
read_folder_path:待处理的原始语料根路径
write_folder_path 中文分词经数据清洗后的语料
'''
def CHSegment(read_folder_path,write_folder_path):
stopwords ={}.fromkeys([line.strip() for line in open('../Database/stopwords/CH_stopWords.txt','r',encoding='utf-8')]) # 停用词表
# 获取待处理根目录下的所有类别
folder_list = os.listdir(read_folder_path)
# 类间循环
# print(folder_list)
for folder in folder_list:
#某类下的路径
new_folder_path = os.path.join(read_folder_path, folder)
# 创建一致的保存文件路径
mkdir(write_folder_path+folder)
#某类下的保存路径
save_folder_path = os.path.join(write_folder_path, folder)
#某类下的全部文件集
# 类内循环
files = os.listdir(new_folder_path)
j = 1
for file in files:
if j > len(files):
break
# 读取原始语料
raw = open(os.path.join(new_folder_path, file),'r',encoding='utf-8').read()
# 只保留汉字
# raw1 = re.sub("[A-Za-z0-9\[\`\~\!\@\#\$\^\&\*\(\)\=\|\{\}\'\:\;\'\,\[\]\.\<\>\/\?\~\!\@\#\\\&\*\%]", "", raw)
# jieba分词
wordslist = jieba.cut(raw, cut_all=False) # 精确模式
# 停用词处理
cutwordlist=''
for word in wordslist:
if word not in stopwords and word=="\n":
cutwordlist+="\n" # 保持原有文本换行格式
elif len(word)>1 :
cutwordlist+=word+"/" #去除空格
#保存清洗后的数据
with open(os.path.join(save_folder_path,file),'w',encoding='utf-8') as f:
f.write(cutwordlist)
j += 1 '''
结巴分词工具进行中文分词处理:
read_folder_path:待处理的原始语料根路径
write_folder_path 中文分词经数据清洗后的语料
'''
def HanLPSeg(read_folder_path,write_folder_path):
startJVM(getDefaultJVMPath(), "-Djava.class.path=C:\hanlp\hanlp-1.3.2.jar;C:\hanlp", "-Xms1g", "-Xmx1g") # 启动JVM,Linux需替换分号;为冒号:
stopwords ={}.fromkeys([line.strip() for line in open('../Database/stopwords/CH_stopWords.txt','r',encoding='utf-8')]) # 停用词表
# 获取待处理根目录下的所有类别
folder_list = os.listdir(read_folder_path)
# 类间循环
# print(folder_list)
for folder in folder_list:
#某类下的路径
new_folder_path = os.path.join(read_folder_path, folder)
# 创建一致的保存文件路径
mkdir(write_folder_path+folder)
#某类下的保存路径
save_folder_path = os.path.join(write_folder_path, folder)
#某类下的全部文件集
# 类内循环
files = os.listdir(new_folder_path)
j = 1
for file in files:
if j > len(files):
break
# 读取原始语料
raw = open(os.path.join(new_folder_path, file),'r',encoding='utf-8').read()
# HanLP分词
HanLP = JClass('com.hankcs.hanlp.HanLP')
wordslist = HanLP.segment(raw)
#保存清洗后的数据
wordslist1=str(wordslist).split(",")
# print(wordslist1[1:len(wordslist1)-1]) flagresult=""
# 去除标签
for v in wordslist1[1:len(wordslist1)-1]:
if "/" in v:
slope=v.index("/")
letter=v[1:slope]
if len(letter)>0 and '\n\u3000\u3000' in letter:
flagresult+="\n"
else:flagresult+=letter +"/" #去除空格
# print(flagresult)
with open(os.path.join(save_folder_path,file),'w',encoding='utf-8') as f:
f.write(flagresult.replace(' /',''))
j += 1
shutdownJVM() if __name__ == '__main__' :
print('开始进行文本分词操作:\n')
t1 = time.time() dealpath="../Database/SogouC/FileTest/"
savepath="../Database/SogouCCut/FileTest/" # 待分词的语料类别集根目录
read_folder_path = '../Database/SogouC/FileNews/'
write_folder_path = '../Database/SogouCCut/' #jieba中文分词
CHSegment(read_folder_path,write_folder_path) #300个txtq其中结巴分词使用3.31秒
HanLPSeg(read_folder_path,write_folder_path) #300个txt其中hanlp分词使用1.83秒 t2 = time.time()
print('完成中文文本切分: '+str(t2-t1)+"秒。")
运行效果:

结巴分词和自然语言处理HanLP处理手记的更多相关文章
- Python中结巴分词使用手记
手记实用系列文章: 1 结巴分词和自然语言处理HanLP处理手记 2 Python中文语料批量预处理手记 3 自然语言处理手记 4 Python中调用自然语言处理工具HanLP手记 5 Python中 ...
- python 结巴分词学习
结巴分词(自然语言处理之中文分词器) jieba分词算法使用了基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能生成词情况所构成的有向无环图(DAG), 再采用了动态规划查找最大概率路径,找出基于 ...
- 结巴分词3--基于汉字成词能力的HMM模型识别未登录词
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 1 算法简介 在 结巴分词2--基于前缀词典及动态规划实现分词 博 ...
- 中文分词之结巴分词~~~附使用场景+demo(net)
常用技能(更新ing):http://www.cnblogs.com/dunitian/p/4822808.html#skill 技能总纲(更新ing):http://www.cnblogs.com/ ...
- python中文分词:结巴分词
中文分词是中文文本处理的一个基础性工作,结巴分词利用进行中文分词.其基本实现原理有三点: 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 采用了动态规 ...
- Python 结巴分词(1)分词
利用结巴分词来进行词频的统计,并输出到文件中. 结巴分词github地址:结巴分词 结巴分词的特点: 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析: 全模式,把句子中所有的可以成 ...
- Python 结巴分词模块
原文链接:http://www.gowhich.com/blog/147?utm_source=tuicool&utm_medium=referral PS:结巴分词支持Python3 源码下 ...
- solr+jieba结巴分词
为什么选择结巴分词 分词效率高 词料库构建时使用的是jieba (python) 结巴分词Java版本 下载 git clone https://github.com/huaban/jieba-ana ...
- 北大开源全新中文分词工具包:准确率远超THULAC、结巴分词
最近,北大开源了一个中文分词工具包,它在多个分词数据集上都有非常高的分词准确率.其中广泛使用的结巴分词误差率高达 18.55% 和 20.42,而北大的 pkuseg 只有 3.25% 与 4.32% ...
随机推荐
- python 全栈开发,Day93(vue内容补充,VueX)
昨日内容回顾 1. 页面的布局 Vue中使用Bootstrap搭页面 1. 安装 1. npm install bootstrap@3.3.7 -S 2. 使用 1. import 'bootstra ...
- 使用事件的preventDefault()方法改变默认行为
事件有属性,还有方法,还有事件.事件本身是个对象^_^ 事件的preventDefault()方法改变默认行为,在事件发生前阻止,不让其发生.这样的应用场景有很多,常见表单验证,如必填字段不能为空. ...
- Windows任务计划 & Linux crontab定时自动任务
如何在windows服务器上面创建定时任务https://blog.csdn.net/shiyong1949/article/details/52779359 Windows 10系统下如何设置计划任 ...
- day10--进程
进程: Python 解释器有一个全局解释器锁(PIL),导致每个 Python 进程中最多同时运行一个线程,因此 Python 多线程程序并不能改善程序性能,不能发挥多核系统的优势,可以通过 ...
- BZOJ1303 [CQOI2009]中位数图 其他
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1303 题意概括 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数 ...
- 《Android进阶之光》--Dagger2
No1: Project的build.gradle文件添加 buildscript{ dependencies{ ...classpath 'com.neenbedankt.gradle.plugin ...
- KMS命令激活VOL版本Office2016
1.命令行下进入Office2016的安装目录 2.设置KMS服务器:cscript ospp.vbs /sethst:kms.landiannews.com kms.landiannews.com是 ...
- HDU1211 密文解锁 【扩展欧几里得】【逆元】
<题目链接> <转载于 >>> > 题目大意: RSA是个很强大的加密数据的工具,对RSA系统的描述如下: 选择两个大素数p.q,计算n = p * q,F( ...
- 又是毕业季I
洛谷P1372 又是毕业季I 对于答案a,k*a是最接近n的,即a=n/k(下取整),所以直接输n/k即可. 我的方法是 二分查找 n/k真的没有想到唉. 我找的最大公约数,如果当前的mid对应的个数 ...
- 基于C++11实现线程池的工作原理
目录 基于C++11实现线程池的工作原理. 简介 线程池的组成 1.线程池管理器 2.工作线程 3.任务接口, 4.任务队列 线程池工作的四种情况. 1.主程序当前没有任务要执行,线程池中的任务队列为 ...