luogu P1627 [CQOI2009]中位数
要求有多少个长度为奇数的区间满足某个数为区间中位数
这样的区间,大于中位数的数个数 等于 小于中位数的数个数
用类似于前缀和的方法,设\(X_i\)为\(i\)和数\(b\)形成的区间内,大于\(b\)的数个数减去小于\(b\)的数个数的值,每次从前面那个位置转移过来,加上这个位置的贡献救星
最后用两个桶统计\(b\)左边和右边的\(X_i\)为某个值的个数,分别记为\(l_i\ r_i\),然后答案为\(\sum_{i,j}l_ir_j\ (i+j==0)\)
注意负下标处理和两个初值要赋
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define inf 999999999
using namespace std;
const int N=100000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,b,w,a[N],x[N],l[N<<1],r[N<<1];
LL ans;
int main()
{
n=rd(),b=rd();
for(int i=1;i<=n;i++)
{
a[i]=rd();
if(a[i]==b) w=i;
}
l[n]=r[n]=1;
for(int i=w+1;i<=n;i++) x[i]=x[i-1]+(a[i]>b?1:-1),++r[x[i]+n];
for(int i=w-1;i>=1;i--) x[i]=x[i+1]+(a[i]>b?1:-1),++l[x[i]+n];
for(int i=0;i<=(n<<1);i++) ans+=1ll*l[i]*r[(n<<1)-i];
printf("%lld\n",ans);
return 0;
}
luogu P1627 [CQOI2009]中位数的更多相关文章
- 洛谷 P1627 [CQOI2009]中位数 解题报告
P1627 [CQOI2009]中位数 题目描述 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 输入输出格式 输入格式 ...
- 洛谷——P1627 [CQOI2009]中位数
P1627 [CQOI2009]中位数 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 中位数的题目有关统计的话,可以转 ...
- p1627 [CQOI2009]中位数
传送门 分析 https://www.luogu.org/blog/user43145/solution-p1627 代码 #include<iostream> #include<c ...
- P1627 [CQOI2009]中位数 题解
CSDN同步 原题链接 简要题意: 给定一个 \(1\) ~ \(n\) 的排列,求以 \(b\) 为中位数的 连续子序列且长度为奇数 的个数. 显然这段序列包含 \(b\). 中位数的定义:排序后在 ...
- Luogu P1627 中位数
Luogu P1627 中位数 先记录目标数的位置,并且把数组映射为: $$a[i]=\begin{cases}-1,a[i]<b\0,a[i]=b\1,a[i]>b\end{cases} ...
- BZOJ 1303 CQOI2009 中位数图 水题
1303: [CQOI2009]中位数图 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2340 Solved: 1464[Submit][Statu ...
- BZOJ 1303: [CQOI2009]中位数图【前缀和】
1303: [CQOI2009]中位数图 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2737 Solved: 1698[Submit][Statu ...
- Luogu1627 [CQOI2009]中位数
Luogu1627 [CQOI2009]中位数 给出一个 \(n\) 的排列,统计该排列有多少个长度为奇数的连续子序列的中位数是 \(k\) \(n\leq10^5\) \(trick\) :因为不需 ...
- 【BZOJ1303】[CQOI2009]中位数图(模拟)
[BZOJ1303][CQOI2009]中位数图(模拟) 题面 BZOJ 洛谷 题解 把大于\(b\)的数设为\(1\),小于\(b\)的数设为\(-1\).显然询问就是有多少个横跨了\(b\)这个数 ...
随机推荐
- LODOP弹出对话框获取保存文件的路径
通常一般不会让用户自己在文本框里填上路径,因为路径要输入字母字符等比较麻烦,而且用户硬盘里文件很多,也不知道要保存在哪里,LODOP可以弹出一个选择保存路径的弹窗,然后把返回选择的路径值.这样用户就可 ...
- BBS论坛项目
一.表结构设计: 1.帖子: class Article(models.Model): title = models.CharField(max_length=255,unique=True) cat ...
- Java8的flatMap如何处理有异常的函数
Java8的flatMap函数,作用是:如果有值,为其执行mapping函数返回Optional类型返回值,否则返回空Optional. 见到的映射函数往往都只有一句话,连大括号都不需要加的,如下: ...
- 【ZOJ2277】The Gate to Freedom
BUPT2017 wintertraining(16) #4 E ZOJ - 2277 题意 输出\(n^n\)的首位的数字. 题解 用科学计数法表示\(n^n=k\cdot 10^b\),那么\(n ...
- 【CodeForces 624D/623B】Array GCD
题 You are given array ai of length n. You may consecutively apply two operations to this array: remo ...
- 洛谷P2480 [SDOI2010]古代猪文(费马小定理,卢卡斯定理,中国剩余定理,线性筛)
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d| ...
- 3分钟上手log4net
1. config里 <log4net> <appender name="ConsoleAppender" type="log4net.Appender ...
- nowcoder172C 保护 (倍增lca+dfs序+主席树)
https://www.nowcoder.com/acm/contest/172/C (sbw大佬太强啦 orz) 先把每一个路径(x,y)分成(x,lca),(y,lca)两个路径,然后就能发现,对 ...
- 51单片机 | I/O口直接输入输出实例
51单片机P0/P1/P2/P3口的区别: P0口要作为低8位地址总线和8位数据总线用,这种情况下P0口不能用作I/O,要先作为地址总线对外传送低8位的地址,然后作为数据总线对外交换数据: P1口只能 ...
- 【hdu5306】 Gorgeous Sequence
http://acm.hdu.edu.cn/showproblem.php?pid=5306 (题目链接) 题意 区间取$min$操作,区间求和操作,区间求最值操作. Solution 乱搞一通竟然A ...