luogu P1627 [CQOI2009]中位数
要求有多少个长度为奇数的区间满足某个数为区间中位数
这样的区间,大于中位数的数个数 等于 小于中位数的数个数
用类似于前缀和的方法,设\(X_i\)为\(i\)和数\(b\)形成的区间内,大于\(b\)的数个数减去小于\(b\)的数个数的值,每次从前面那个位置转移过来,加上这个位置的贡献救星
最后用两个桶统计\(b\)左边和右边的\(X_i\)为某个值的个数,分别记为\(l_i\ r_i\),然后答案为\(\sum_{i,j}l_ir_j\ (i+j==0)\)
注意负下标处理和两个初值要赋
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define inf 999999999
using namespace std;
const int N=100000+10;
il LL rd()
{
re LL x=0,w=1;re char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,b,w,a[N],x[N],l[N<<1],r[N<<1];
LL ans;
int main()
{
n=rd(),b=rd();
for(int i=1;i<=n;i++)
{
a[i]=rd();
if(a[i]==b) w=i;
}
l[n]=r[n]=1;
for(int i=w+1;i<=n;i++) x[i]=x[i-1]+(a[i]>b?1:-1),++r[x[i]+n];
for(int i=w-1;i>=1;i--) x[i]=x[i+1]+(a[i]>b?1:-1),++l[x[i]+n];
for(int i=0;i<=(n<<1);i++) ans+=1ll*l[i]*r[(n<<1)-i];
printf("%lld\n",ans);
return 0;
}
luogu P1627 [CQOI2009]中位数的更多相关文章
- 洛谷 P1627 [CQOI2009]中位数 解题报告
P1627 [CQOI2009]中位数 题目描述 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 输入输出格式 输入格式 ...
- 洛谷——P1627 [CQOI2009]中位数
P1627 [CQOI2009]中位数 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 中位数的题目有关统计的话,可以转 ...
- p1627 [CQOI2009]中位数
传送门 分析 https://www.luogu.org/blog/user43145/solution-p1627 代码 #include<iostream> #include<c ...
- P1627 [CQOI2009]中位数 题解
CSDN同步 原题链接 简要题意: 给定一个 \(1\) ~ \(n\) 的排列,求以 \(b\) 为中位数的 连续子序列且长度为奇数 的个数. 显然这段序列包含 \(b\). 中位数的定义:排序后在 ...
- Luogu P1627 中位数
Luogu P1627 中位数 先记录目标数的位置,并且把数组映射为: $$a[i]=\begin{cases}-1,a[i]<b\0,a[i]=b\1,a[i]>b\end{cases} ...
- BZOJ 1303 CQOI2009 中位数图 水题
1303: [CQOI2009]中位数图 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2340 Solved: 1464[Submit][Statu ...
- BZOJ 1303: [CQOI2009]中位数图【前缀和】
1303: [CQOI2009]中位数图 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2737 Solved: 1698[Submit][Statu ...
- Luogu1627 [CQOI2009]中位数
Luogu1627 [CQOI2009]中位数 给出一个 \(n\) 的排列,统计该排列有多少个长度为奇数的连续子序列的中位数是 \(k\) \(n\leq10^5\) \(trick\) :因为不需 ...
- 【BZOJ1303】[CQOI2009]中位数图(模拟)
[BZOJ1303][CQOI2009]中位数图(模拟) 题面 BZOJ 洛谷 题解 把大于\(b\)的数设为\(1\),小于\(b\)的数设为\(-1\).显然询问就是有多少个横跨了\(b\)这个数 ...
随机推荐
- js條件結構和循環結構
條件結構: if(語句1) if(語句1)else(語句2) if(語句1)elseif(語句2)else(語句3) switch結構: switch() { case 1: break: case ...
- Unsupported major.minor version ... JDK具体对应版本
java.lang.UnsupportedClassVersionError: hudson/remoting/Launcher : Unsupported major.minor version 5 ...
- 使用正则真正的修改TP5的config.php文件
来源 https://www.kancloud.cn/manual/thinkphp5/118026 问题 前台传值后台使用Config::set()方法写入config.php文件,但是并没有真正的 ...
- Educational Codeforces Round 8 B. New Skateboard
题目链接:http://codeforces.com/problemset/problem/628/B 解题思路: 一个数最后两位数能被4整除那么这个数就能被4整除,而且题目还是连续的子序列,这就很简 ...
- Java OOM 常见情况
Java OOM 常见情况 原文:https://blog.csdn.net/qq_42447950/article/details/81435080 1)什么是OOM? OOM,全称“Out Of ...
- 【 Gym - 101124E 】Dance Party (数学)
BUPT2017 wintertraining(15) #4G Gym - 101124 E.Dance Party 题意 有c种颜色,每个颜色最多分配给两个人,有M个男士,F个女士,求至少一对男士同 ...
- 自学Aruba4.1-Aruba开机初始化
点击返回:自学Aruba之路 自学Aruba4.1-Aruba开机初始化 无线控制器刚启动的时候,是没有任何配置的,需要进行初始化配置才能进行管理. 通过无线控制器的console端口连接无线控制器, ...
- NOIP2014题解
NOIP2014题解 Day1 生活大爆炸版石头剪刀布 rps 简单模拟题,注意细节 #include<iostream> #include<cstdio> using nam ...
- 【转】CPU上下文切换的次数和时间(context switch)
http://iamzhongyong.iteye.com/blog/1895728 什么是CPU上下文切换? 现在linux是大多基于抢占式,CPU给每个任务一定的服务时间,当时间片轮转的时候,需要 ...
- C# ADO.NET基础&实战
什么是ADO.NET:数据库访问技术! 作用:通过程序来连接访问数据库! 一.基础: using System.Data.SqlClient; //数据库连接命名空间 string connec ...