<题目链接>

<转载于 >>> >

Problem Description
CRB has N different candies. He is going to eat K candies.
He wonders how many combinations he can select.
Can you answer his question for all K(0 ≤ K ≤ N)?
CRB is too hungry to check all of your answers one by one, so he only asks least common multiple(LCM) of all answers.
 
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case there is one line containing a single integer N.
1 ≤ T ≤ 300
1 ≤ N ≤ 106
 
Output
For each test case, output a single integer – LCM modulo 1000000007(109+7).
 
Sample Input
5
1
2
3
4
5
 
Sample Output
1
2
3
12
10
 

题目大意:

题目大意就是求 :    lcm(C(n,0),C(n,1),C(n,2),,,,C(n,n))

解题分析:

有一个对应的结论: lcm(C(n,0),C(n,1),C(n,2),,,,C(n,n))  =   lcm(1,2,,,,n,n+1)/(n+1)。

于是这道题就变成了求(1~n)的lcm,当然,直接暴力求解会超时,还有求LCM的更加高效的解法,叫做分解质因数法。并且,由于(n+1)可能很大,所以还要用到逆元的知识。

辅助理解的博客 >>> 

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
typedef long long LL;
const int N = ;
const LL mod = ;
LL f[N];
LL gcd(LL a,LL b){
return b==?a:gcd(b,a%b);
} LL extend_gcd(LL a,LL b,LL &x,LL &y){
if(!b){
x=,y = ;
return a;
}else{
LL x1,y1;
LL d = extend_gcd(b,a%b,x1,y1);
x = y1;
y = x1 - a/b*y1;
return d;
}
}
LL mod_reverse(LL a,LL n)
{
LL x,y;
LL d=extend_gcd(a,n,x,y);
if(d==) return (x%n+n)%n;
else return -;
}
int prime[N];
LL F[N];
bool only_divide(int n){
int t = prime[n];
while(n%t==){
n/=t;
}
if(n==) return true;
return false;
}
void init(){
for(int i=;i<N;i++){
prime[i] = i;
}
for(int i=;i<N;i++){ ///十分巧妙的一步,判断某个数是否只有唯一的质因子,只需要把每个数的倍数存下来
if(prime[i]==i){
for(int j=i+i;j<N;j+=i){
prime[j] = i;
}
}
}
F[] = ;
for(int i=;i<N;i++){
if(only_divide(i)){
F[i] = F[i-]*prime[i]%mod;
}else F[i] = F[i-];
}
}
int main()
{
init();
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
int n;
scanf("%d",&n);
LL inv = mod_reverse((n+),mod);
printf("%lld\n",F[n+]*inv%mod);
}
return ;
}

2018-07-30

hdu 5407【LCM性质】+【逆元】(结论题)的更多相关文章

  1. hdu 5407(LCM好题+逆元)

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  2. HDU 5407(2015多校10)-CRB and Candies(组合数最小公倍数+乘法逆元)

    题目地址:pid=5407">HDU 5407 题意:CRB有n颗不同的糖果,如今他要吃掉k颗(0<=k<=n),问k取0~n的方案数的最小公倍数是多少. 思路:首先做这道 ...

  3. Hdu 5407 CRB and Candies (找规律)

    题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...

  4. hdu4786 Fibonacci Tree[最小生成树]【结论题】

    一道结论题:如果最小生成树和最大生成树之间存在fib数,成立.不存在或者不连通则不成立.由于是01图,所以这个区间内的任何生成树都存在. 证明:数学归纳?如果一棵树没有办法再用非树边0边替代1边了,那 ...

  5. [codevs5578][咸鱼]tarjan/结论题

    5578 咸鱼  时间限制: 1 s  空间限制: 128000 KB   题目描述 Description 在广袤的正方形土地上有n条水平的河流和m条垂直的河流,发达的咸鱼家族在m*n个河流交叉点都 ...

  6. BZOJ_1367_[Baltic2004]sequence_结论题+可并堆

    BZOJ_1367_[Baltic2004]sequence_结论题+可并堆 Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 ...

  7. [BZOJ3609][Heoi2014]人人尽说江南好 结论题

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏.     在过去,人们是要 ...

  8. 【uoj#282】长度测量鸡 结论题

    题目描述 给出一个长度为 $\frac{n(n+1)}2$ 的直尺,要在 $0$ 和 $\frac{n(n+1)}2$ 之间选择 $n-1$ 个刻度,使得 $1\sim \frac{n(n+1)}2$ ...

  9. 【uoj#175】新年的网警 结论题+Hash

    题目描述 给出一张 $n$ 个点 $m$ 条边的无向连通图,每条边的边权为1.对于每个点 $i$ ,问是否存在另一个点 $j$ ,使得对于任意一个不为 $i$ 或 $j$ 的点 $k$ ,$i$ 到 ...

  10. 【uoj#180】[UR #12]实验室外的攻防战 结论题+树状数组

    题目描述 给出两个长度为 $n$ 的排列 $A$ 和 $B$ ,如果 $A_i>A_{i+1}$ 则可以交换 $A_i$ 和 $A_{i+1}$ .问是否能将 $A$ 交换成 $B$ . 输入 ...

随机推荐

  1. react框架的状态管理

    安装: cnpm install --save redux cnpm install --save react-redux   安装好后导入模块内容: impor {createStore} from ...

  2. ACM-ICPC 2018 沈阳赛区网络预赛 K题

    题目链接: https://nanti.jisuanke.com/t/31452 AC代码(看到不好推的定理就先打表!!!!): #include<bits/stdc++.h> using ...

  3. Maven入门-安装及配置(一)

    0.Maven简介 三种仓库:

  4. 编码器AE & VAE

    学习总结于国立台湾大学 :李宏毅老师 自编码器 AE (Auto-encoder)    & 变分自动编码器VAE(Variational Auto-encoder)             ...

  5. nodejs async series 小白向

    async.series({  flag1:function(done){ //flag1 是一个流程标识,用户自定义      //逻辑处理      done(null,"返回结果&qu ...

  6. jdk8系列三、jdk8之stream原理及流创建、排序、转换等处理

    一.为什么需要 Stream Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念.它也不同于 StAX ...

  7. css实现左(右)侧固定宽度,右(左)侧宽度自适应 ---清除浮动

    老话长谈,css的不固定适应布局   不管是面试还是在平时的工作中,这样的布局形式一直都在用着,很常见,所以今天我就拿出来在唠叨一下, 既是给自己一个备忘存储,也是一个学习巩固的参考,知道大家都会,还 ...

  8. JDK1.5引入的concurrent包

    并发是伴随着多核处理器的诞生而产生的,为了充分利用硬件资源,诞生了多线程技术.但是多线程又存在资源竞争的问题,引发了同步和互斥,并带来线程安全的问题.于是,从jdk1.5开始,引入了concurren ...

  9. iOS 8 WKWebView 知识点

    首先看看这篇文章,写得很好:http://nshipster.cn/wkwebkit/ 再推荐去看看 iOS_8_by_Tutorials 这本书里的 WKWebView相关章节! 我这里说下自己的简 ...

  10. 查看Java JVM参数配置信息命令

    查看Java JVM参数配置信息命令 java -XX:+PrintCommandLineFlags jvm运行时状态的参数,可以很快找出问题所在.现在把几个命令记录一下:1. jstat这个命令对于 ...