http://acm.hdu.edu.cn/showproblem.php?pid=4612

Warm up

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 8309    Accepted Submission(s): 1905

Problem Description
  N planets are connected by M bidirectional channels that allow instant transportation. It's always possible to travel between any two planets through these channels.
  If we can isolate some planets from others by breaking only one channel , the channel is called a bridge of the transportation system.
People don't like to be isolated. So they ask what's the minimal number of bridges they can have if they decide to build a new channel.
  Note that there could be more than one channel between two planets.
 
Input
  The input contains multiple cases.
  Each case starts with two positive integers N and M , indicating the number of planets and the number of channels.
  (2<=N<=200000, 1<=M<=1000000)
  Next M lines each contains two positive integers A and B, indicating a channel between planet A and B in the system. Planets are numbered by 1..N.
  A line with two integers '0' terminates the input.
 
Output
  For each case, output the minimal number of bridges after building a new channel in a line.
 
Sample Input
4 4
1 2
1 3
1 4
2 3
0 0
 
Sample Output
0
题目大意:给一个连通图,求加一条边之后最少还有多少个桥。
题目分析:首先看到要求是"改造桥",则先进行缩点,由于是改造桥,所以进行边双连通的缩点,然后求树的直径【树上桥最多的一条路】,则最后结果ans=原来桥数-直径。
题解:Tarjan缩点求桥数+两次bfs求树的直径
 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
queue<int>pq;
struct edge {
int fr;
int to;
int next;
}e[], e2[];
int cnt, scc_cnt, ccnt, tim;
int head[], head2[], dfn[], low[], stk[], col[],d[], tp,dis,node;
bool in_stk[], vis[];
int ans = ;
void dfs(int x, int fa) {
d[x] = dis++;
for (int i = head2[x]; i != -; i = e2[i].next) {
int v = e2[i].to;
if (v == fa)continue;
if (!vis[v]) {
vis[v] = ;
dfs(v, x);
}
}
return;
}
void bfs(int x) {
while (!pq.empty())pq.pop();
pq.push(x);
memset(d, , sizeof(d));
memset(vis, , sizeof(vis));
while (!pq.empty()) {
int s = pq.front(); pq.pop();
for (int i = head2[s]; i != -; i = e2[i].next) {
int v = e2[i].to;
if (!vis[v]) {
vis[v] = ;
d[v] = d[s] + ;
pq.push(v);
if (d[v] > ans) {
node = v;
ans = d[v];
}
}
}
}
}
void Tarjan(int u, int fa, int id) {
dfn[u] = low[u] = ++tim;
in_stk[u] = ;
stk[tp++] = u;
for (int i = head[u]; i != -; i = e[i].next) {
int v = e[i].to;
if (!dfn[v]) {
Tarjan(v, u, i);
if (low[v] < low[u])low[u] = low[v];
}
else if (in_stk[v] && ((i ^ ) != id)) {
if (dfn[v] < low[u])low[u] = dfn[v];//这里使用dfn[v]和low[v]都可以
}
}
if (dfn[u] == low[u]) {
scc_cnt++;
do {
tp--;
int tt = stk[tp];
col[tt] = scc_cnt;
in_stk[tt] = ;
} while (stk[tp] != u);
}
}
void add(int x, int y) {
e[cnt].fr = x;
e[cnt].to = y;
e[cnt].next = head[x];
head[x] = cnt++;
}
void add2(int x, int y) {
e2[ccnt].fr = x;
e2[ccnt].to = y;
e2[ccnt].next = head2[x];
head2[x] = ccnt++;
}
int main() {
int n, m;
scanf("%d%d", &n, &m);
while (n || m) {
cnt = ;
tp = ;
scc_cnt = ;
ccnt = ;
ans = ;
tim = ;
memset(vis, , sizeof(vis));
memset(in_stk, , sizeof(in_stk));
memset(col, , sizeof(col));
memset(head, -, sizeof(head));
memset(head2, -, sizeof(head2));
memset(dfn, , sizeof(dfn));
memset(low, , sizeof(low));
while (m--) {
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
add(b, a);
}
for (int i = ; i <= n; i++) {
if (!dfn[i]) {
Tarjan(i, -, -);
}
}
for (int i = ; i < cnt; i += ) {
if (col[e[i].fr] != col[e[i].to]) {
add2(col[e[i].fr], col[e[i].to]);
add2(col[e[i].to], col[e[i].fr]);
}
}
bfs();
bfs(node);
cout << ccnt / - ans << endl;
scanf("%d%d", &n, &m);
}
return ;
}
 

【HDOJ4612】【双连通分量缩点+找树的直径】的更多相关文章

  1. HDU 4612 Warm up(双连通分量缩点+求树的直径)

    思路:强连通分量缩点,建立一颗新的树,然后求树的最长直径,然后加上一条边能够去掉的桥数,就是直径的长度. 树的直径长度的求法:两次bfs可以求,第一次随便找一个点u,然后进行bfs搜到的最后一个点v, ...

  2. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  3. POJ3177 Redundant Paths(边双连通分量+缩点)

    题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...

  4. 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)

    layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...

  5. HDU 4612 Warm up (边双连通分量+缩点+树的直径)

    <题目链接> 题目大意:给出一个连通图,问你在这个连通图上加一条边,使该连通图的桥的数量最小,输出最少的桥的数量. 解题分析: 首先,通过Tarjan缩点,将该图缩成一颗树,树上的每个节点 ...

  6. Gym - 100676H H. Capital City (边双连通分量缩点+树的直径)

    https://vjudge.net/problem/Gym-100676H 题意: 给出一个n个城市,城市之间有距离为w的边,现在要选一个中心城市,使得该城市到其余城市的最大距离最短.如果有一些城市 ...

  7. hdu4612 Warm up[边双连通分量缩点+树的直径]

    给你一个连通图,你可以任意加一条边,最小化桥的数目. 添加一条边,发现在边双内是不会减少桥的.只有在边双与边双之间加边才有效.于是,跑一遍边双并缩点,然后就变成一棵树,这样要加一条非树边,路径上的点( ...

  8. poj 3177 Redundant Paths(边双连通分量+缩点)

    链接:http://poj.org/problem?id=3177 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任 ...

  9. 图论-桥/割点/双连通分量/缩点/LCA

    基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...

随机推荐

  1. NiXi.DAY06东软实训.:面向对象思想~抽象~static~final~构造方法及其重载

    本章技能目标: 使用类图描述设计 掌握面向对象设计的基本步骤 掌握类和对象的概念 掌握构造方法及其重载 掌握封装的概念及其使用 本章单词: class:类 object:对象 static: fina ...

  2. linux系统中不同颜色的文件夹及根目录介绍

    文件颜色的代表含义: 蓝色:目录 绿色:可执行文件 红色:压缩文件 蓝绿色:链接文件 灰色:其他文件 黄色:设备文件,其中包括block,char,fifo.  白色:表示普通文件  红色闪烁:表示链 ...

  3. Cracking The Coding Interview 1.1

    //原文: // // Implement an algorithm to determine if a string has all unique characters. What if you c ...

  4. 一个简单的JSP程序示例

    <%@ page language="java" import="java.util.*" pageEncoding="utf-8"% ...

  5. jdbc中Class.forName(driverName)的作用

    上次面试别人问我jdbc的过程: 我是这样回答的: Class.forName加载驱动 DriverManager.connect(url,username, password)获取连接对象 conn ...

  6. request的响应时间elapsed和超时timeout

    前言:requests发请求时,接口的响应时间,也是我们需要关注的一个点,如果响应时间太长,也是不合理的 1.获取接口请求的响应时间  r.elapsed.total_seconds() import ...

  7. centos6.6安装hadoop-2.5.0(一、本地模式安装)

    操作系统:centos6.6(一台服务器) 环境:selinux disabled:iptables off:java 1.8.0_131 安装包:hadoop-2.5.0.tar.gz hadoop ...

  8. lvs的FULLNAT

  9. LVS原理详解(3种工作方式8种调度算法)

    一.集群简介 什么是集群 计算机集群简称集群是一种计算机系统,它通过一组松散集成的计算机软件和/或硬件连接起来高度紧密地协作完成计算工作.在某种意义上,他们可以被看作是一台计算机.集群系统中的单个计算 ...

  10. 30行python让图灵机器人和茉莉机器人无止尽的瞎扯蛋

    首先注册申请图灵机器人的API: http://www.tuling123.com/ 查看一下API的格式,很简单: { "key": "APIKEY", &q ...