5. 4 本构方程 - 应力与变形之间的关系

5.4.1. 本构关系的一般形式

1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\bf T}({\bf x},{\bf F}({\bf x})), \eex$$ 则称材料是 (Cauchy) 弹性的; 这里 $\hat {\bf T}$ 称为响应函数. 若再 ${\bf T}({\bf y})=\hat{\bf T}({\bf F}({\bf x}))$, 则称弹性体是齐次的, 否则称为非齐次的.

2. 以下讨论齐次弹性材料.

3. 客观性假设 (弹性体在刚体运动下不产生任何变形): $$\bex \hat{\bf T}({\bf Q}{\bf F})={\bf Q}\hat{\bf T}({\bf F}){\bf Q}^T. \eex$$

4. 材料称为超弹性的, 如果 $$\bex \exists\ W=\hat W({\bf F}),\st p_{ij}=\cfrac{\p \hat W({\bf F})}{\p f_{ij}}. \eex$$ 而 $W=\hat W({\bf F})$ 称为贮能函数 (应变能函数).

(1) 超弹性材料一定是弹性的.

(2) 对超弹性材料而言, 客观性假设由下式给出 $$\bex \hat W({\bf Q}{\bf F})=\hat W({\bf F}). \eex$$

5.4.2. 各向同性材料的本构方程

1. 定义: 如果弹性材料的本构方程 $$\bex {\bf T}({\bf y})=\hat {\bf T}({\bf F}({\bf x})), \eex$$ 中的响应函数 $\hat {\bf T}$ 对一切正交阵 ${\bf Q}$ 有 $$\bex \hat{\bf T}({\bf F}{\bf Q})=\hat {\bf T}({\bf F}), \eex$$ 则称材料是各向同性的.

2. 对超弹性材料而言, 各向同性由贮能函数给出: $$\bex \hat W({\bf F}{\bf Q})=\hat W({\bf F}),\quad\forall\mbox{ 正交阵 }{\bf Q}. \eex$$ (证明见习题 6).

3. 由 $$\beex \bea \hat{\bf T}({\bf F})&=\hat {\bf T}({\bf V}{\bf R})\quad\sex{\mbox{极分解}}\\ &=\hat{\bf T}({\bf V})\\ &=\tilde {\bf T}({\bf B}^\frac{1}{2}) \eea \eeex$$ 知各向同性材料的 Cauchy 应力张量可表为 ${\bf V}$ 或 ${\bf B}$ 的函数.

4. 对各向同性的弹性材料, 其本构方程有形式 $$\bex {\bf T}=\sum_{i=0}^2 \beta_i(I_B){\bf B}^i, \eex$$ 其中 $I_B$ 为 ${\bf B}$ 的三个主不变量. (Euler 坐标系下的 Cauchy 应力张量通过左 Cauchy - Green 应变张量给出)

5. 对各向同性的弹性材料, 其本构方程有形式 $$\bex {\bf \Sigma}=\sum_{i=0}^2 \gamma_i(I_C){\bf C}^i. \eex$$ (Lagrange 坐标下的 第二 Piola 应力张量通过右 Cauchy - Green 应变张量给出)

6. 对在自然状态 ($\hat{\bf T}({\bf I})={\bf 0}$) 附近的变形, 各向同性材料的本构方程有形式 $$\bex {\bf \Sigma}=\lm(\tr \tilde{\bf E}){\bf I}+2\mu\tilde{\bf E}+o(|\tilde{\bf E}|), \eex$$ 其中 $\lm,\mu$ 为常数, 称为 Lam\'e 常数, 而 $\tilde{\bf E}=\cfrac{1}{2}({\bf C}-{\bf I})$.

7. 如果 $$\bex {\bf \Sigma}=\lm(\tr\tilde{\bf E}){\bf I}+2\mu\tilde{\bf E}, \eex$$ 则称材料是 St. Venant - Kirchhoff 材料.

(1) St. Venant - Kirchhoff 材料满足客观性假设 $$\bex \hat {\bf T}({\bf Q}{\bf F})={\bf Q}\hat {\bf T}({\bf F}){\bf Q}^T. \eex$$ 仅须注意到 $$\beex \bea {\bf E}&=\cfrac{1}{2}({\bf C}-{\bf I})=\cfrac{1}{2}({\bf F}^T{\bf F}-{\bf I}),\\ J{\bf F}^{-1}\hat{\bf T}({\bf F}){\bf F}^{-T}&={\bf \Sigma}. \eea \eeex$$

(2) St. Venant - Kirchhoff 材料是各向同性的: $$\bex \hat{\bf T}({\bf F}{\bf Q})=\hat{\bf T}({\bf F}). \eex$$

5.4.3. 贮能函数的例子

1. 对 St. Venant - Kirchhoff 材料, $$\bex {\bf P}={\bf F}{\bf \Sigma}=\lm(\tr \tilde{\bf E}){\bf F}+2\mu {\bf F}\tilde{\bf E}. \eex$$ 而贮能函数 $$\bex W=\cfrac{\lm}{2}(\tr{\bf E})^2+\mu\tr {\bf E}^2. \eex$$ 事实上, $$\beex \bea \cfrac{\p}{\p f_{ij}}(\tr \tilde{\bf E})^2 &=\tr \tilde{\bf E}\cdot \cfrac{\p}{\p f_{ij}} \sez{\cfrac{1}{2}({\bf F}^T{\bf F}-{\bf I})}\\ &=\tr\tilde{\bf E}\cdot\cfrac{\p}{\p f_{ij}}\sez{\cfrac{1}{2}\sum_{m,n} f_{nm}{f_{nm}}}\\ &=\tr\tilde{\bf E}\cdot f_{ij}\\ &=\sez{(\tr\tilde{\bf E})^2{\bf F}}_{ij};\\ \cfrac{\p}{\p f_{ij}}\sex{\tr\tilde{\bf E}^2} &=\sum_{m,n}\cfrac{\p}{\p e_{mn}}\sez{\sum_{p,q}e_{p,q}e_{pq}}\cdot\cfrac{\p}{\p f_{ij}}e_{mn}\\ &=\sum_{m,n}2e_{mn}\cdot\cfrac{1}{2}\cfrac{\p}{\p f_{ij}} \sum_p f_{pm}f_{pn}\\ &=\sum_{mn}e_{mn}\sex{\delta_{mj}f_{in}+f_{im}\delta_{jn}}\\ &=\sum_n e_{jn}f_{in}+\sum_me_{mj}f_{im}\\ &=2({\bf F}\tilde{\bf E})_{ij}. \eea \eeex$$

2. 各向同性材料的贮能函数的形式 由客观性假设, $$\beex \bea &\quad\hat W({\bf Q}{\bf F})=\hat W({\bf F})\quad\sex{\forall\mbox{ 正交阵 }{\bf Q}}\\ &\ra \hat W({\bf F})=\hat W({\bf U})\quad\sex{{\bf Q}={\bf R}^T}\\ &\quad\quad\quad\quad\ =\tilde W({\bf C})\quad\sex{\tilde W({\bf C})=\hat W({\bf C}^\frac{1}{2})}. \eea \eeex$$ 由各向同性, $$\beex \bea \hat W({\bf F})&=\hat W({\bf F}{\bf Q})\\ &=\tilde W(({\bf F}{\bf Q})^T({\bf F}{\bf Q}))\\ &=\tilde W({\bf Q}^T{\bf C}{\bf Q})\\ &=\tilde W(\diag(\lm_1,\lm_2,\lm_3))\quad\sex{\mbox{取适当正交阵 }{\bf Q}}. \eea \eeex$$ 如此, $\hat W$ 仅依赖于 ${\bf C}$ 的主值, 而仅依赖于 ${\bf U}$ 的主值 $\mu_1,\mu_2,\mu_3$.

3. 贮能函数的例子

(1) Ogden 材料.

(2) Neo - Hookean 材料.

(3) Mooney - Rivlin 材料.

(3) 可压缩的 Ogden 材料.

(4) Ciarlet - Geymonet 材料.

5.4.4. 线性弹性 - 广义 Hooke 定律

1. 广义 Hookean 定律: 在自然状态下的参考构形的附近的小变形, $$\bex {\bf P}={\bf A}{\bf E}\quad\sex{p_{ij}=\sum_{kl}a_{ijkl}e_{kl}}, \eex$$ 其中 ${\bf E}$ 为无穷小应变张量.

(1) 由 ${\bf C}$ 的对称性知 $$\bex a_{ijkl}=a_{ijlk}. \eex$$

(2) 由 $\bar {\bf P}$ 的对称性知 $$\bex a_{ijkl}=a_{jikl}. \eex$$

(3) 若材料是超弹性的, 则 (见习题 4) $$\bex a_{ijkl}=a_{klij}. \eex$$

(4) 若材料是各向同性的, 由 ${\bf P}={\bf F}{\bf \Sigma}$ 及习题 4. 3, 我们有应力 - 应变关系: $$\bex p_{ij}=\lm (e_{11}+e_{22}+e_{33})\delta_{ij}+2\mu e_{ij}, \eex$$ 而 $$\bex a_{ijkl}=\lm \delta_{ij}\delta_{kl}+\mu\sex{\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}}. \eex$$ 另一方面, 我们也有应变 - 应力关系: $$\bex e_{ij}=\cfrac{1}{2\mu}p_{ij}-\cfrac{\lm}{2\mu(3\lm+2\mu)}(p_{11}+p_{22}+p_{33})\delta_{ij}. \eex$$

2. Lam\'e 常数 $\lm,\mu$ 的物理意义

(1) Hookean 定律: 相对伸长较小时, 轴向应力与相对伸长成正比, 比值称为 Young 模量 $E$.

(2) 横截面直径的相对减少量与相对伸长量成正比, 比值称为 Poisson 比 $\nu$.

(3) 剪应力与它所引起的角度变化成正比, 称为剪切模量.

(4) 平均正应力与由变形产生的体积增长率之比称为体积弹性模量 $\kappa$.

(5) 这些模量与 Lam\'e 常数的关系: $$\beex \bea \sedd{\ba{ll} E=\cfrac{\mu(3\lm+2\mu)}{\lm+\mu}\\ \nu=\cfrac{\lm}{2(\lm+\mu)} \ea},&\quad\quad\sedd{\ba{ll} \lm=\cfrac{E\nu}{(1+\nu)(1-2\nu)}\\ \mu=\cfrac{E}{2(1+\nu)} \ea};\\ \mu:&\quad\quad\sex{\mbox{就是剪切模量}};\\ \kappa&=\lm+\cfrac{2}{3}\mu. \eea \eeex$$

[物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系的更多相关文章

  1. [物理学与PDEs]第5章第1节 引言

    1.  弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2.  荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理 ...

  2. [物理学与PDEs]第4章第1节 引言

    1.  本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2.  燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一 ...

  3. [物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题

    5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1.  线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cf ...

  4. [物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构

    5.5.1 线性弹性动力学方程组   1.  线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\r ...

  5. [物理学与PDEs]第5章第3节 守恒定律, 应力张量

    5. 3 守恒定律, 应力张量 5. 3. 1 质量守恒定律 $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$ 5. 3. 2 应 ...

  6. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.3 位移梯度张量与无穷小应变张量

    1.  位移向量 $$\bex {\bf u}={\bf y}-{\bf x}. \eex$$ 2.  位移梯度张量 $$\bex \n_x{\bf u}={\bf F}-{\bf I}. \eex$ ...

  7. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.2 Cauchy - Green 应变张量

    1.  引理 (极分解): 设 $|{\bf F}|\neq 0$, 则存在正交阵 ${\bf R}$ 及对称正定阵 ${\bf U},{\bf V}$ 使得 $$\bex {\bf F}={\bf ...

  8. [物理学与PDEs]第5章第2节 变形的描述, 应变张量 2.1 变形梯度张量

    $$\bex \rd{\bf y}={\bf F}\rd {\bf x}, \eex$$ 其中 ${\bf F}=\n_x{\bf y}=\sex{\cfrac{\p y_i}{\p x_j}}$ 为 ...

  9. [物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.3 一维反应流体力学方程组的数学结构

    一维理想反应流体力学方程组是一阶拟线性双曲组.

随机推荐

  1. 英语口语练习系列-C03-常用问句

    连接到英语口语系列总分类 连接到上一章抱怨 枫桥夜泊 How are you doing?你好吗? 美国人见面时候最常用的打招呼方式: "Hey! How are you doing?&qu ...

  2. tomcat报异常Invalid character found in method name. HTTP method names must be tokens

    最近监控了一下测试环境的日志,突然出现如下一个异常 由Error parsing HTTP request header可以看出是由于解析请求头出错导致的,但是它属于DEBUG级别的异常,虽然不影响系 ...

  3. Windows操作系统分类

    Windows主要有桌面版和服务器版.移动版三个版本 桌面版现在主流是WindowsXP.WindowsVista.Windows7.Windows8.Windows10 其中WindowsXP已经被 ...

  4. Java 8 中为什么要引出default方法

    (原) default方法是java 8中新引入进的,它充许接口中除了有抽象方法以外,还可以拥用具有实现体的方法,这一点跟jdk8之前的版本已经完全不一样了,为什么要这样做呢? 拿List接口举例,在 ...

  5. 日志级别的选择:Debug、Info、Warn、Error

    日志信息分类 1.等级由低到高:debug<info<warn<Error: 2.区别: debug 级别最低,可以随意的使用于任何觉得有利于在调试时更详细的了解系统运行状态的东东: ...

  6. 基于element ui的级联选择器组件实现的分类后台接口

    今天在做资产管理系统的时候遇到一个分类的级联选择器,前端是用的element的组件,需要后台提供接口支持.     这个组件需要传入的数据结构大概是这样的,详细的可参考官方案例: [{ value: ...

  7. ASP.NET Web API2返回值处理流程

    关于WebApi2控制器方法的四种返回类型请参考官方文档: https://docs.microsoft.com/zh-cn/aspnet/web-api/overview/getting-start ...

  8. SpringCloud(9)使用Spring Cloud OAuth2保护微服务系统

    一.简介 OAth2是一个标准的授权协议. 在认证与授权的过程中,主要包含以下3种角色. 服务提供方 Authorization Server. 资源持有者 Resource Server. 客户端 ...

  9. Java中,尽量相信自己,使用自己写的方法,不要使用底层提供的方法。都是坑。

    Date转LocalDate时,调用toInstant()报UnsupportedOperationException异常. https://www.jianshu.com/p/11d8ed48f7a ...

  10. Powershell 函数中的CmdletBinding()是怎么回事?

    参考文章: Don Jones https://technet.microsoft.com/en-us/library/ff677563.aspx powershell 帮助文档: help abou ...