Cable TV Network
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 4702   Accepted: 2173

Description

The interconnection of the relays in a cable TV network is bi-directional. The network is connected if there is at least one interconnection path between each pair of relays present in the network. Otherwise the network is disconnected. An empty network or a network with a single relay is considered connected. The safety factor f of a network with n relays is: 
1. n, if the net remains connected regardless the number of relays removed from the net. 
2. The minimal number of relays that disconnect the network when removed. 

For example, consider the nets from figure 1, where the circles mark the relays and the solid lines correspond to interconnection cables. The network (a) is connected regardless the number of relays that are removed and, according to rule (1), f=n=3. The network (b) is disconnected when 0 relays are removed, hence f=0 by rule (2). The network (c) is disconnected when the relays 1 and 2 or 1 and 3 are removed. The safety factor is 2.

Input

Write a program that reads several data sets from the standard input and computes the safety factor for the cable networks encoded by the data sets. Each data set starts with two integers: 0<=n<=50,the number of relays in the net, and m, the number of cables in the net. Follow m data pairs (u,v), u < v, where u and v are relay identifiers (integers in the range 0..n-1). The pair (u,v) designates the cable that interconnects the relays u and v. The pairs may occur in any order.Except the (u,v) pairs, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set, the program prints on the standard output, from the beginning of a line, the safety factor of the encoded net.

Sample Input

0 0
1 0
3 3 (0,1) (0,2) (1,2)
2 0
5 7 (0,1) (0,2) (1,3) (1,2) (1,4) (2,3) (3,4)

Sample Output

0
1
3
0
2

Hint

The first data set encodes an empty network, the second data set corresponds to a network with a single relay, and the following three data sets encode the nets shown in figure 1.

Source

[Submit]   [Go Back]   [Status]   [Discuss]

将原图中每个点拆成两个点,分别为入点和出点,从入点向出点连一条容量为1的边,代表割掉这个点的费用为1。

对于原图中的一条边(x,y),连一条x的出点到y的入点容量为正无穷的边,以及一条y的出点到x的入点容量为正无穷的边。

枚举新图中的S和T,S在出点中枚举,T在入点中枚举,求最小割,更新答案。

 #include <cstdio>
#include <cstring> const int inf = 2e9;
const int maxn = ; inline int nextInt(void)
{
register int ret = ;
register int neg = false;
register int bit = getchar(); for (; bit < ; bit = getchar())
if (bit == '-')neg ^= true; for (; bit > ; bit = getchar())
ret = ret * + bit - ; return neg ? -ret : ret;
} template <class T>
inline T min(T a, T b)
{
return a < b ? a : b;
} int n, m;
int s, t;
int edges;
int hd[maxn];
int nt[maxn];
int to[maxn];
int fl[maxn];
int bp[maxn]; inline void add(int u, int v, int f)
{
nt[edges] = hd[u]; to[edges] = v; fl[edges] = f; hd[u] = edges++;
nt[edges] = hd[v]; to[edges] = u; fl[edges] = ; hd[v] = edges++;
} int dep[maxn]; inline bool bfs(void)
{
static int que[maxn];
static int head, tail; memset(dep, , sizeof(dep));
head = , tail = ;
que[tail++] = s;
dep[s] = ; while (head != tail)
{
int u = que[head++], v;
for (int i = hd[u]; ~i; i = nt[i])
if (!dep[v = to[i]] && fl[i])
dep[v] = dep[u] + , que[tail++] = v;
} return dep[t];
} int dfs(int u, int f)
{
if (u == t || !f)
return f; int used = , flow, v; for (int i = hd[u]; ~i; i = nt[i])
if (dep[v = to[i]] == dep[u] + && fl[i])
{
flow = dfs(v, min(f - used, fl[i])); used += flow;
fl[i] -= flow;
fl[i^] += flow; if (used == f)
return f;
} if (!used)
dep[u] = ; return used;
} inline int maxFlow(void)
{
int maxFlow = , newFlow; while (bfs())
while (newFlow = dfs(s, inf))
maxFlow += newFlow; return maxFlow;
} signed main(void)
{
while (~scanf("%d%d", &n, &m))
{
memset(hd, -, sizeof(hd)), edges = ; for (int i = ; i <= m; ++i)
{
int u = nextInt();
int v = nextInt(); add(u << , v << | , inf);
add(v << , u << | , inf);
} for (int i = ; i < n; ++i)
add(i << | , i << , ); memcpy(bp, fl, sizeof(bp)); int ans = inf; for (int i = ; i < n; ++i)
for (int j = ; j < n; ++j)
if (i != j)
{
s = i << ;
t = j << | ;
memcpy(fl, bp, sizeof(fl));
ans = min(ans, maxFlow());
} printf("%d\n", ans == inf ? n : ans);
}
}

@Author: YouSiki

POJ 1966 Cable TV Network的更多相关文章

  1. POJ 1966 Cable TV Network(顶点连通度的求解)

                               Cable TV Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  2. POJ 1966 Cable TV NETWORK(网络流-最小点割集)

                                    Cable TV NETWORK The interconnection of the relays in a cable TV net ...

  3. POJ 1966 Cable TV Network (无向图点连通度)

    [题意]给出一个由n个点,m条边组成的无向图.求最少去掉多少点才能使得图中存在两点,它们之间不连通. [思路]回想一下s->t的最小点割,就是去掉多少个点能使得s.t不连通.那么求点连通度就枚举 ...

  4. poj 1966 Cable TV Network 顶点连通度

    题目链接 给一个图, n个点m条边, 求至少去掉多少个点可以使得图不再联通.随便指定一个点为源点, 枚举其他点为汇点的情况, 跑网络流, 求其中最小的情况. 如果最后ans为inf, 说明是一个完全图 ...

  5. POJ 1966 Cable TV Network (点连通度)【最小割】

    <题目链接> 题目大意: 给定一个无向图,求点连通度,即最少去掉多少个点使得图不连通. 解题分析: 解决点连通度和边连通度的一类方法总结见   >>> 本题是求点连通度, ...

  6. POJ 1966 Cable TV Network (算竞进阶习题)

    拆点+网络流 拆点建图应该是很常见的套路了..一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么. 所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t ...

  7. POJ 1966 Cable TV Network 【经典最小割问题】

    Description n个点的无向图,问最少删掉几个点,使得图不连通 n<=50 m也许可以到完全图? Solution 最少,割点,不连通,可以想到最小割. 发现,图不连通,必然存在两个点不 ...

  8. POJ - 1966 Cable TV Network (最大流求点连通度)

    题意:求一个无向图的点连通度.点联通度是指,一张图最少删掉几个点使该图不连通:若本身是非连通图,则点连通度为0. 分析:无向图的点连通度可以转化为最大流解决.方法是:1.任意选择一个点作为源点:2.枚 ...

  9. POJ 1966 Cable TV Network (最大流最小割)

    $ POJ~1966~Cable~TV~Network $ $ solution: $ 第一眼可能让人很难下手,但本就是冲着网络流来的,所以我们直接一点.这道题我们要让这个联通图断开,那么势必会有两个 ...

随机推荐

  1. linux的基本语法及一些设置

    rm -r note.txt //delete网络配置进入 vi /etc/sysconfig/network-scripts/ifcfg-teh0修改配置DEVICE=eth0BOOTPROTO=d ...

  2. Drupal 8.2.4安装简体中文步骤

    安装的时候发现很多情况下会出现各种问题,现在写下自己安装成功的步骤: 1.首先官网下载zip安装包drupal-8.2.4.zip 2.下载官方提供的8.2.4简体中文语言包drupal-8.2.4. ...

  3. 改变你代码习惯的ES6

    最近读阮一峰老师的ES6标准入门,让我感觉到了ES6的强大之处,读书之余整理了一些笔记,因为边读边记录的,所以可能会比较杂乱. ECMAScript和Javascript的关系 1996年11月,Ja ...

  4. 从无到有实现登录功能以及thinkphp怎么配置数据库信息

    好开心,终于解决了.从学习android到现在写登录功能已经不是一次两次了,如今再写想着肯定是信手拈来,没有想到的是尽然折磨了我一天的时间才搞定它.唉...... 先来看几张截图,这次的登录跟以往的不 ...

  5. Android 从零开始打造异步处理框架

    转载请标明出处:http://www.cnblogs.com/zhaoyanjun/p/5995752.html 本文出自[赵彦军的博客] 概述 在Android中会使用异步任务来处理耗时操作,避免出 ...

  6. h5嵌入视频遇到的bug及总结

    最近做的一个h5活动因为嵌入视频而发现了好多以前从未发现的问题,在测试的时候不同系统不同版本不同环境等多多少少都出现了些问题,搞得我也是焦头烂额的,不过好在最终问题都解决了,自己也学到了好多东西,为了 ...

  7. js异步加载的3种方式(转载)

    1.defer标签 只支持IE    defer属性的定义和用法: 属性规定是否对脚本执行进行延迟,直到页面加载为止.有的 javascript 脚本 document.write 方法来创建当前的文 ...

  8. Oracle学习笔记三 SQL命令

    SQL简介 SQL 支持下列类别的命令: 1.数据定义语言(DDL) 2.数据操纵语言(DML) 3.事务控制语言(TCL) 4.数据控制语言(DCL)  

  9. yii2 增删改查

    自己总结的yii2 advanced 版本的简单的增删改查,希望对大家有所帮助 1.gii生成的actionCreate()方法中 获取插入语句的id $id = $model->attribu ...

  10. WPF CheckBox样式 ScrollViewer样式 WrapPanel、StackPanel、Grid布局

    本节讲述布局,顺带加点样式给大家看看~单纯学布局,肯定是枯燥的~哈哈 那如上界面,该如何设计呢? 1.一些布局元素经常用到.Grid StackPanel Canvas WrapPanel等.如上这种 ...