约瑟夫环问题的原来描述为,设有编号为1,2,……,n的n(n>0)个人围成一个圈,从第1个人开始报数,报到m时停止报数,报m的人出圈,再从他的下一个人起重新报数,报到m时停止报数,报m的出圈,……,如此下去,直到所有人全部出圈为止。当任意给定n和m后,设计算法求n个人出圈的次序。  稍微简化一下。

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。

利用数学推导,如果能得出一个通式,就可以利用递归、循环等手段解决。下面给出推导的过程:

(1)第一个被删除的数为 (m - 1) % n。

(2)假设第二轮的开始数字为k,那么这n - 1个数构成的约瑟夫环为k, k + 1, k + 2, k +3, .....,k - 3, k - 2。做一个简单的映射。

k         ----->  0 
             k+1    ------> 1 
             k+2    ------> 2 
               ... 
               ...

k-2    ------>  n-2

这是一个n -1个人的问题,如果能从n - 1个人问题的解推出 n 个人问题的解,从而得到一个递推公式,那么问题就解决了。假如我们已经知道了n -1个人时,最后胜利者的编号为x,利用映射关系逆推,就可以得出n个人时,胜利者的编号为 (x + k) % n。其中k等于m % n。代入(x + k) % n  <=>  (x + (m % n))%n <=> (x%n + (m%n)%n)%n <=> (x%n+m%n)%n <=> (x+m)%n

(3)第二个被删除的数为(m - 1) % (n - 1)。

(4)假设第三轮的开始数字为o,那么这n - 2个数构成的约瑟夫环为o, o + 1, o + 2,......o - 3, o - 2.。继续做映射。

o         ----->  0 
             o+1    ------> 1 
             o+2    ------> 2 
               ... 
               ...

o-2     ------>  n-3

这是一个n - 2个人的问题。假设最后的胜利者为y,那么n -1个人时,胜利者为 (y + o) % (n -1 ),其中o等于m % (n -1 )。代入可得 (y+m) % (n-1)

要得到n - 1个人问题的解,只需得到n - 2个人问题的解,倒推下去。只有一个人时,胜利者就是编号0。下面给出递推式:

f [1] = 0; 
          f [ i ] = ( f [i -1] + m) % i; (i>1)

有了递推公式,实现就非常简单了,给出循环的两种实现方式。再次表明用标准库的便捷性。

对于上面第一个映射表,由映射关系可得,如果0~n-1中某人报了m-1,设这个人为x,那么原位置一定是(x+k)%n

相信大家都能看出规律,为什么要%n,因为后面的序号不会一直无限制增大,会变小,比如4,5,6,7,1,2,那么1和2就是(4+4)%7,(4+5)%7

附上代码,当然这题也可以递归推一推,但没有必要

#include <stdio.h>

using namespace std;
const int maxn=1e6+7;
int f[maxn];
int main(){
int n,k;
scanf("%d%d",&n,&k);
f[1]=0;
for(int i=2;i<=n;++i){
f[i]=(f[i-1]+k)%i;
}
printf("%d",f[n]+1);
return 0;
}

51nod 1073约瑟夫环 递归公式法的更多相关文章

  1. 51nod 1074 约瑟夫环 V2

    N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从1开始报数.问最后剩下的人的编号. 例如:N = 3,K = 2.2号先出列,然后是1号,最后剩下的是3号. ...

  2. [剑指Offer]62-圆圈中最后剩下的数(约瑟夫环问题)(法二待做)

    题目链接 https://www.nowcoder.com/practice/f78a359491e64a50bce2d89cff857eb6?tpId=13&tqId=11199&t ...

  3. 关于递推算法求解约瑟夫环问题P(n,m,k,s)

    一. 问题描述 已知n个人,分别以编号1,2,3,...,n表示,围坐在一张圆桌周围.从编号为k的人开始报数1,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又出列:依此规律重复下去, ...

  4. 约瑟夫环问题详解(java版)

    1 什么是约瑟夫环问题? 约瑟夫,是一个古犹太人,曾经在一次罗马叛乱中担任将军,后来战败,他和朋友及另外39个人躲在一口井里,但还是被发现了.罗马人表示只要投降就不死,约瑟夫想投降,可是其他人坚决不同 ...

  5. 【约瑟夫环变形】UVa 1394 - And Then There Was One

    首先看到这题脑子里立刻跳出链表..后来继续看如家的分析说,链表法时间复杂度为O(n*k),肯定会TLE,自己才意识到果然自个儿又头脑简单了 T^T. 看如家的分析没怎么看懂,后来发现这篇自己理解起来更 ...

  6. C++版 - 剑指Offer 面试题45:圆圈中最后剩下的数字(约瑟夫环问题,ZOJ 1088:System Overload类似)题解

    剑指Offer 面试题45:圆圈中最后剩下的数字(约瑟夫环问题) 原书题目:0, 1, - , n-1 这n个数字排成一个圈圈,从数字0开始每次从圆圏里删除第m个数字.求出这个圈圈里剩下的最后一个数字 ...

  7. 小小c#算法题 - 12 - Joseph Circle(约瑟夫环)

    约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数(从1开始报数),数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个人又 ...

  8. 17965 幸运之星(优先做) 约瑟夫环问题O(n)

    17965 幸运之星(优先做) 时间限制:100MS  内存限制:65535K 提交次数:0 通过次数:0 题型: 编程题   语言: G++;GCC;VC Description 每年新年派对的最后 ...

  9. javascript中使用循环链表实现约瑟夫环问题

    1.问题 传说在公元1 世纪的犹太战争中,犹太历史学家弗拉维奥·约瑟夫斯和他的40 个同胞被罗马士兵包围.犹太士兵决定宁可自杀也不做俘虏,于是商量出了一个自杀方案.他们围成一个圈,从一个人开始,数到第 ...

随机推荐

  1. USB限流芯片,4.8A最大,过压关闭6V

    PW1503,PW1502是超低RDS(ON)开关,具有可编程的电流限制,以保护电源源于过电流和短路保护.它具有超温保护以及反向闭锁功能. PW1503,PW1502采用薄型(1毫米)5针薄型SOT2 ...

  2. Mybatis入门Demo(单表的增删改查)

    1.Mybatis 什么是Mybatis: mybatis是一个持久层框架,用java编写的 它封装了jdbc操作的很多细节,使开发者只需要关注sql语句本身,而无需关注注册驱动.创建连接等繁杂过程 ...

  3. 纯手工撸一个vue框架

    前言 vue create 真的很方便,但是很多人欠缺的是手动撸一遍.有些人离开脚手架都不会开发了. Vue最简单的结构 步骤 搭建最基本的结构 打开空文件夹,通过 npm init 命令生成pack ...

  4. SELECT ... FOR UPDATE or SELECT ... FOR SHARE Locking Reads session

    小结: 1.注意使用限制 Locking reads are only possible when autocommit is disabled (either by beginning transa ...

  5. By default, the connection will be closed if the proxied server does not transmit any data within 60 seconds.

    WebSocket proxying https://nginx.org/en/docs/http/websocket.html By default, the connection will be ...

  6. Index-Only Scans and Covering Indexes

    小结: 1.覆盖索引 回表 2. All indexes in PostgreSQL are secondary indexes, meaning that each index is stored ...

  7. 一个实体对象不能由多个 IEntityChangeTracker 实例引用

    因为需求需要EF 实现批量的删除后插入,所以出现了这个报错, 这个报错的原因是,EF查询是有带跟踪的,跟踪后其他上下文想操作这个实体就会报错. 所以,查询使用 ef AsNoTracking 查后无追 ...

  8. 20200927gryz校赛心得

    今天gyh学长给我们办了一场校内模拟赛,特地跑来记录一下心得 昨天晚上问了一下lkp学长,听说题目不卡常,不毒瘤,因此我在考试前20分钟仍在若无其事的练习着刚学的强连通分量,丝毫不慌 结果虽然rank ...

  9. CQOI 2006 简单题

    CQOI 2006 简单题 有一个 n 个元素的数组,每个元素初始均为 0.有 m 条指令,要么让其中一段连续序列数字反转--0 变 1,1 变 0(操作 11),要么询问某个元素的值(操作 2). ...

  10. Oracle数据库查询锁表及解锁

    一.查询哪些表被锁以及查看锁表得会话及操作系统进程ID 其中locked_mode为锁的级别,spid为数据库所在操作系统的进程id select c.sid, c.serial#, c.userna ...