题目描述

输入输出样例

输入 #1 复制

12 4

1

3

2

4

2

1

2

3

1

1

3

4

输出 #1 复制

7

说明/提示

分析

首先要注意合唱队排好队之后不一定是按\(1.2.3......m\)的顺序的

\(N\)的范围很大,但\(m\)的数据比较小,所以我们考虑装压DP

我们设\(f[i]\)为状态为\(i\)的合唱队已经安排好位置的最小花费

接下来就是状态转移方程的问题

for(int i=1;i<(1<<m);i++){
int len=0;
for(int j=1;j<=m;j++){
if(i&(1<<(j-1))) len+=num[j];
}
for(int j=1;j<=m;j++){
if(i&(1<<(j-1))) f[i]=min(f[i],f[i^(1<<(j-1))]+num[j]-sum[len][j]+sum[len-num[j]][j]);
}
}

第一维枚举的是状态,在枚举状态之后,我们还要统计当前状态下哪些合唱队已经排好了位置

我们用一个变量\(len\)记录排好队的总人数,如果当前合唱队已经排好了队,那么我们把总人数加上当前合唱队的人数

其中,编号为\(j\)的合唱队的总人数\(num[j]\)可以预处理

为什么这样做呢?

因为我们无论让偶像们怎么出队,他们最终的状态是确定的,肯定是一个合唱队的偶像站到一起,因此我们就可以统计排好队后当前区间的总长度

接下来就是状态转移

如果编号为\(j\)的合唱队在我们决策的范围之内,那我们就需要尝试将编号为\(j\)的合唱队的全体成员都放在队伍最后

那么此时我们就需要将编号为\(j\)的合唱队中不在区间\([len-num[j]+1,num[j]]\)的偶像移到该区间

此时的花费为\(num[j]-sum[len][j]+sum[len-num[j]][j]\)

其中\(sum[i][j]\)表示开始时前\(i\)个位置中编号为\(j\)的合唱队员的个数

问题就可以解决了

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=22,maxm=1e5+5;
int f[1<<maxn];
int num[maxn],sum[maxm][maxn];
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
int aa;
scanf("%d",&aa);
num[aa]++;
for(int j=1;j<=m;j++) sum[i][j]=sum[i-1][j];
sum[i][aa]++;
}
memset(f,0x3f,sizeof(f));
f[0]=0;
for(int i=1;i<(1<<m);i++){
int len=0;
for(int j=1;j<=m;j++){
if(i&(1<<(j-1))) len+=num[j];
}
for(int j=1;j<=m;j++){
if(i&(1<<(j-1))) f[i]=min(f[i],f[i^(1<<(j-1))]+num[j]-sum[len][j]+sum[len-num[j]][j]);
}
}
printf("%d\n",f[(1<< m)-1]);
return 0;
}

洛谷 P3694 邦邦的大合唱站队 状压DP的更多相关文章

  1. P3694 邦邦的大合唱站队 (状压DP)

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  2. 洛谷P3959 宝藏(NOIP2017)(状压DP,子集DP)

    洛谷题目传送门 Dalao的题解多数是什么模拟退火.DFS剪枝.\(O(3^nn^2)\)的状压DP之类.蒟蒻尝试着把状压改进了一下使复杂度降到\(O(3^nn)\). 考虑到每条边的贡献跟它所在的层 ...

  3. 洛谷P1896 [SCOI2005]互不侵犯King【状压DP】

    题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入格式: 只有一行,包含两个数N,K ...

  4. 【洛谷 P1896】[SCOI2005]互不侵犯(状压dp)

    题目链接 题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 这是道状压\(DP\)好题啊.. ...

  5. BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】

    [题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...

  6. 【洛谷5492】[PKUWC2018] 随机算法(状压DP)

    点此看题面 大致题意: 用随机算法求一张图的最大独立集:每次随机一个排列,从前到后枚举排列中的点,如果当前点加入点集中依然是独立集,就将当前点加入点集中,最终得到的点集就是最大独立集.求这个随机算法的 ...

  7. 洛谷P2396 yyy loves Maths VII【状压dp】

    题目:https://www.luogu.org/problemnew/show/P2396 题意:有n个数,每次选择一个表示走$a[i]$步,每个数只能选一次. 最多有两个厄运数字,如果走到了厄运数 ...

  8. 洛谷 3112 [USACO14DEC]后卫马克Guard Mark——状压dp

    题目:https://www.luogu.org/problemnew/show/P3112 状压dp.发现只需要记录当前状态的牛中剩余承重最小的值. #include<iostream> ...

  9. 洛谷 P7324 - [WC2021] 表达式求值(状压+dp)

    题面传送门 现场人傻系列-- 首先建出 \(E\) 的表达式树,具体来说表达式的每一个叶子节点表示一个数组 \(A_i\),每一个非叶子节点都表示一次运算,它的值表示左右儿子进行该运算后得到的结果.这 ...

随机推荐

  1. 谈谈Spring中的对象跟Bean,你知道Spring怎么创建对象的吗?

    本系列文章: 读源码,我们可以从第一行读起 你知道Spring是怎么解析配置类的吗? 配置类为什么要添加@Configuration注解? 推荐阅读: Spring官网阅读 | 总结篇 Spring杂 ...

  2. 没有国产主机,怎么开发:交叉编译和QEMU虚拟机

    1. 背景 近期国产化的趋势越来越浓,包括国产操作系统.国产CPU等.时隔十多年,QQ for Linux也更新了.做为软件开发人员,"有幸"也需要适配国产化.至于国产化的意义等就 ...

  3. SpringCloud Alibaba (一):序言

    为什么要转用SpringCloud Alibaba? Spring Cloud Netflix项目进入维护模式 在2018年底时,Netflix宣布Hystrix进入维护模式.自2016年以来,Rib ...

  4. 自动完成 APP【字典树(Trie树)+dfs】

    自动完成 APP 传送门  来源:upc12786 题目描述 奶牛 Bessie 很喜欢用手机上网聊天,但她的蹄子太大,经常会按到好几个键造成不必要的麻烦(丢死人了,你下辈子还是不要当奶牛了).于是 ...

  5. Oracle VM VirtualBox 连接 Centos7 minimal版

    概述: 本博客是系列博客,主要讲述在Windows环境下安装虚拟机,在虚拟机中安装lunix系统,在lunix下安装docker,在docker中安装并使用常用的开发软件,比如tomcat.redis ...

  6. c常用函数-strchr和strrchr

    strchr和strrchr strrchr函数用于查找指定字符在一个字符串中最后一次出现的位置,然后返回指向该位置的指针 strchr函数用于查找指定字符在一个字符串中第一次出现的位置,然后返回指向 ...

  7. ImportError: cannot import name _remove_dead_weakref

    出现这个错误, 和python环境有关. 电脑有多个版本造成的. python3 有这个_remove_dead_weakref python 2.7.10 并没有_remove_dead_weakr ...

  8. 在群晖NAS上运行URLOS之后竟然能安装Discuz! Q!!

    如果我们手头上有1台群晖NAS时,有没有考虑过把群晖NAS当成服务器来使用,这样会不会很有意思呢? 现在,我们终于可以尝试一番了,把群晖NAS变成一台实实在在的服务器,在上面跑各种运行环境!其实很简单 ...

  9. 笨办法学python - 专业程序员的养成完整版PDF免费下载_百度云盘

    笨办法学python - 专业程序员的养成完整版PDF免费下载_百度云盘 提取码:xaln  怎样阅读本书 由于本书结构独特,你必须在学习时遵守几条规则 录入所有代码,禁止复制粘贴 一字不差地录入代码 ...

  10. Linux下如何查看硬件信息?

    我们在 Linux 下进行开发时,有时也需要知道当前的硬件信息,比如:CPU几核?使用情况?内存大小及使用情况?USB设备是否被识别?等等类似此类问题.下面良许介绍一些常用的硬件查看命令. lshw ...