ElasticSearch相信有不少朋友都了解,即使没有了解过它那相信对ELK也有所认识E即是ElasticSearch。ElasticSearch最开始更多用于检索,作为一搜索的集群产品简单易用绝对是一个非常不错的选择,其实本人早在ElasticSearch v0.2的时候就使用,一转眼数年过去现在都7.X了。

其实ElasticSearch除了提供强大的集群化搜索服务外,它提供一个aggregation功能会再一次让你受到它的强大,aggregation是一个数据统计汇总功能,表面上这功能在关系数据库上也可以做,但结合分词建维度就更能体现出它的灵活之处。

关系数据库问题

拿产品订单为例,它有产品分类,不同的规格,销售人,客户和地区等;然而这些信息在设计上都是归纳到不同的表中,如果要针对这些不同的信息来统计订单销售情况那相信是一件非常繁琐和效率极其低下的工作(先不说数据数千万了上亿或更大规模,就算几十上百万数据这个关系数据的SQL查询也够受了)。即便可以把数据抽取并归纳起来做统计,但随着新的数据维度增加新的维度字段重新调用。

无维度字段?

在数据统计每个维度都对一个信息列来存储,这样加入维度必须就需要添加信息列。如果用一个字段存储所有维度信息呢?显然这种想法在传统关系数据库中也不可能的,因为无法做表的关联和维度区分,其实不要说传统数据库很多数据库都无法在一个字符中拆分出不同的维度出来,除非加入程序来切分,但这种法在数据规模大的情况必然是不可取的!

如果用一个字段就能存储所有维度,那就意味着以后加入新的维度数据也无须调整结构和程序就实现新维护度数据的统计处理。这看上去多么美好,似乎也很难实现,但ElasticSearch能解决这一问题。

试验

首先ElasticSearch是一个搜索引擎,它最擅长的工作是对内容进行分词并构建索引;在这机制下可以对一个字段的信息进行拆分并存储到索引上。通过这一特性同样可以把一个字段的信息切分成N个维度的信息,然后存储到索引;只要有了单一的维度索引那接下来针对不同维护的汇总统计就简单了。

在单节点的ElasticSearch上创建了5千万条产品销售数据;然后Tag字段存储对应的维度信息,每个维度通过/来区分,分别有:customer,employee,country和category.有了这些信息,接下来的工作是尝试使用Aggr功能来完成相应的汇总

var query = db.Index.CreateQuery();
query.Prefix("Tag", "客户");
var aggs = db.Index.CreateAggs("customer_group",
Elasticsearch.Search.AggsType.terms, "Tag");
aggs.SubAggs("sum_quantity", Elasticsearch.Search.AggsType.sum, "Quantity");
aggs.SubAggs("sum_total", Elasticsearch.Search.AggsType.sum, "Total");
aggs.Size(5);
aggs.Query = query;
var items = await aggs.Execute<OrderRecord>();

代码并不复杂,查询Tag标签存在customer的数据,并对它们进行一个分组,最后再汇总出对应的Quantity和Total信息;最后获取排在最前面的5条数据。

效率

ElasticSearch做这方面的效率怎样呢?部署在一个节点上,分别汇总了客户,国家和员工。

5千万条(单机单节点)

5千万条(单机双节点)

这个时间是在不停更新索引下同时做统计的结果,当在索引不更新的情况其二次处理效率会高上几倍。

静态历史数据

上面绍了ElasticSearch对大数据一个聚合效率做了一个测试,那测试是基于动态数据测试,即在聚合测试的过程中同时大量更新索引数据;接下来做的测试则是针对固定的历史数据,在聚合测试过程中不进行数据更新。

测试数据环境

5千万条件产品销售数据,分布在2000-2020间,所有数据部署在单机双节点的服务中。

测试过程

分别汇总每一年的员工,国家和分类数据,并显示最前面的3条记录。

int top = 3;
for (int i = 2000; i < 2020; i++)
{
DateTime start = new DateTime(i, 1, 1);
DateTime end = new DateTime(i + 1, 1, 1);
var result = await db.AggsTag("国家", top, start, end, null);
Console.WriteLine($"| {result.Title} use {result.UseTime:###,###.00}ms");
Console.WriteLine($"|-{"".PadLeft(89, '-')}|");
foreach (SummaryItem item in result.Items)
{
Print(item);
} result = await db.AggsTag("分类", top, start, end, null);
Console.WriteLine($"| {result.Title} use {result.UseTime:###,###.00}ms");
Console.WriteLine($"|-{"".PadLeft(89, '-')}|");
foreach (SummaryItem item in result.Items)
{
Print(item);
} result = await db.AggsTag("员工", top, start, end, null);
Console.WriteLine($"| {result.Title} use {result.UseTime:###,###.00}ms");
Console.WriteLine($"|-{"".PadLeft(89, '-')}|");
foreach (SummaryItem item in result.Items)
{
Print(item);
}
}

测试结果

从测试结果来看效率非常出色,每个年分类聚合统计所损耗的时候大概在0.1秒。

小试牛刀ElasticSearch大数据聚合统计的更多相关文章

  1. SQL大数据操作统计

    SQL大数据操作统计 1:select count(*) from table的区别SELECT object_name(id) as TableName,indid,rows,rowcnt FROM ...

  2. ElasticSearch大数据分布式弹性搜索引擎使用

    阅读目录: 背景 安装 查找.下载rpm包 .执行rpm包安装 配置elasticsearch专属账户和组 设置elasticsearch文件所有者 切换到elasticsearch专属账户测试能否成 ...

  3. ElasticSearch大数据分布式弹性搜索引擎使用—从0到1

    阅读目录: 背景 安装 查找.下载rpm包 .执行rpm包安装 配置elasticsearch专属账户和组 设置elasticsearch文件所有者 切换到elasticsearch专属账户测试能否成 ...

  4. Spark 大数据文本统计

    此程序功能: 1.完成对10.4G.csv文件各个元素频率的统计 2.获得最大的统计个数 3.对获取到的统计个数进行降序排列 4.对各个元素出现次数频率的统计 import org.apache.sp ...

  5. 【大数据】了解Hadoop框架的基础知识

    介绍 此Refcard提供了Apache Hadoop,这是最流行的软件框架,可使用简单的高级编程模型实现大型数据集的分布式存储和处理.我们将介绍Hadoop最重要的概念,描述其架构,指导您如何开始使 ...

  6. Elasticsearch 聚合统计与SQL聚合统计语法对比(一)

    Es相比关系型数据库在数据检索方面有着极大的优势,在处理亿级数据时,可谓是毫秒级响应,我们在使用Es时不仅仅进行简单的查询,有时候会做一些数据统计与分析,如果你以前是使用的关系型数据库,那么Es的数据 ...

  7. 用logstash 作数据的聚合统计

    用logstash 作数据的聚合统计 以spark-streaming 处理消费数据,统计日志经spark sql存储在mysql中 日志写入方式为append val wordsDataFrame ...

  8. 大数据篇:ElasticSearch

    ElasticSearch ElasticSearch是什么 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口. ...

  9. Elasticsearch 第六篇:聚合统计查询

    h2.post_title { background-color: rgba(43, 102, 149, 1); color: rgba(255, 255, 255, 1); font-size: 1 ...

随机推荐

  1. 双向数据绑定 v-model

    双向数据绑定 就是既可以从页面传到数据也可以从数据到页面 初始运行结果为: 在输入框 更改数据 相应的输入框上的也会相对改变 然后再试试利用控制台更改数据 可以看到数据也被改变了 而且输入框中的内容也 ...

  2. Flink相对于Spark的优点

    Flink相对于Spark的优点 容错 Flink 基于两阶段提交实现了精确的一次处理语义. Spark Streaming 只能做到不丢数据,但是有重复. 反压 Flink 在数据传输过程中使用了分 ...

  3. 在wildfly中使用SAML协议连接keycloak

    目录 简介 OpenID Connect和SAML SAML的工作流程 在keycloak中使用SAML 准备wildfy和应用程序 简介 我们知道SSO的两个常用的协议分别是SAML和OpenID ...

  4. js--数组的filter()过滤方法的使用

    前言 你还在通过for循环遍历数组吗?你还在遍历之后一项一项的通过if判断过滤你需要的数据吗?你还在写着一大堆代码实现一个简单的过滤数据功能吗?那么,今天他来了.他就是这里要介绍的es6中数组filt ...

  5. sqlmap进阶篇—POST注入三种方法

    测试是否存在post注入 第一种方法 直接加--form让它自动加载表单 第二种方法 把form表单里面提交的内容复制出来,放到data中跑 第三种方法 先用burp suite抓包,把包的内容存到本 ...

  6. linux -bash: unzip: 未找到命令(实测有效!)

    今天使用linux解压的时候遇到了不能解压的问题,然后就看了一些文档,写一个解决方案 Linux version 3.10.0-957.10.1.el7.x86_64 (mockbuild@kbuil ...

  7. 闭关修炼180天--手写持久层框架(mybatis简易版)

    闭关修炼180天--手写持久层框架(mybatis简易版) 抛砖引玉 首先先看一段传统的JDBC编码的代码实现: //传统的JDBC实现 public static void main(String[ ...

  8. Java 从 Redis中取出的Json字符串 带斜杠的问题解决方案

    Java 从 Redis中取出的Json字符串 带斜杠的问题: { "code": 200, "message": "成功", " ...

  9. Layui关闭弹出层对话框--刷新父界面

    在毕设的开发中,添加用户.添加权限等等一些地方需要类似于bootstrap中的模态框.然而开发用的却是layui 在layui中有弹出层可以实现其中的效果. 但是,一般用的时候都是提交后关闭窗口,刷新 ...

  10. js表单简单验证(手机号邮箱)

    1 <%@ page language="java" contentType="text/html; charset=UTF-8" 2 pageEncod ...