题目:给出一个无向图,求出最小生成树,如果该图不连通,则输出orz。

解法:Kruskal求MST。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 #include<algorithm>
6 using namespace std;
7
8 const int N=5010,M=200010;
9 int fa[N];
10 struct edge{int x,y,d;}a[M];
11
12 int ffind(int x)
13 {
14 if (fa[x]!=x) fa[x]=ffind(fa[x]);
15 return fa[x];
16 }
17 bool cmp(edge x,edge y) {return x.d<y.d;}
18 int main()
19 {
20 int n,m;
21 scanf("%d%d",&n,&m);
22 int x,y,d;
23 for (int i=1;i<=m;i++)
24 scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].d);
25 sort(a+1,a+1+m,cmp);
26 for (int i=1;i<=n;i++) fa[i]=i;
27 int sum=0,cnt=0;
28 for (int i=1;i<=m;i++)
29 {
30 int x=a[i].x,y=a[i].y;
31 int xx=ffind(x),yy=ffind(y);
32 if (xx!=yy)
33 {
34 fa[xx]=yy;
35 sum+=a[i].d;
36 cnt++;
37 if (cnt==n-1) break;
38 }
39 }
40 if (cnt==n-1) printf("%d\n",sum);
41 else printf("orz\n");
42 return 0;
43 }

【洛谷 p3366】模板-最小生成树(图论)的更多相关文章

  1. [洛谷P3366] [模板] 最小生成树

    存个模板,顺便复习一下kruskal和prim. 题目传送门 kruskal 稀疏图上表现更优. 设点数为n,边数为m. 复杂度:O(mlogm). 先对所有边按照边权排序,初始化并查集的信息. 然后 ...

  2. 最小生成树 & 洛谷P3366【模板】最小生成树 & 洛谷P2820 局域网

    嗯... 理解生成树的概念: 在一幅图中将所有n个点连接起来的n-1条边所形成的树. 最小生成树: 边权之和最小的生成树. 最小瓶颈生成树: 对于带权图,最大权值最小的生成树. 如何操作? 1.Pri ...

  3. 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题

    链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. 洛谷P3375 [模板]KMP字符串匹配

    To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...

  6. LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...

  7. 【AC自动机】洛谷三道模板题

    [题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...

  8. 洛谷-P5357-【模板】AC自动机(二次加强版)

    题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...

  9. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  10. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

随机推荐

  1. Svm算法原理及实现

    Svm(support Vector Mac)又称为支持向量机,是一种二分类的模型.当然如果进行修改之后也是可以用于多类别问题的分类.支持向量机可以分为线性核非线性两大类.其主要思想为找到空间中的一个 ...

  2. SpringBoot配置文件(2)

    六.配置文件加载 SpringBoot 启动会扫描以下位置的application.properties或者application.yml文件作为SpringBoot的默认配置文件 file:./co ...

  3. 在MongoDB中执行查询与创建索引

    实验目的: (1)掌握MongoDB中数据查询的方法: (2)掌握MongoDB中索引及其创建: 实验内容: 一. MongoDB中数据查询的方法: (1)find函数的使用: (2)条件操作符: a ...

  4. 【JS学习】for-in与for-of

    前言:本博客系列为学习后盾人js教程过程中的记录与产出,如果对你有帮助,欢迎关注,点赞,分享.不足之处也欢迎指正,作者会积极思考与改正. 总述: 名称 遍历 适用 for-in 索引 主要建议白能力对 ...

  5. 【Linux】find查找空文件夹

    linux下批量删除空文件(大小等于0的文件)的方法 find . -name "*" -type f -size 0c | xargs -n 1 rm -f 就是删除1k大小的文 ...

  6. 【Oracle】查看当前连接数和最大连接数

    查看当前数据库连接数 select count(*) from v$session where username is not null; select count(*) from v$process ...

  7. ctfhub技能树—sql注入—UA注入

    手注 打开靶机 查看页面信息 抓取数据包 根据提示注入点在User-Agent文件头中 开始尝试注入 成功查到数据库名 查询数据表名 查询字段名 查询字段信息 成功拿到flag 盲注 测试是否存在时间 ...

  8. 集成 12 种协议、可于 USBC 端口的快充协议芯片IP2188

    1. 特性  支持 12 种 USB 端口快充协议  支持 USB TypeC PD2.0/PD3.0/PPS DFP 协议  支持多种充电协议(QC3.0/QC2.0,FCP,SCP, AFC,MT ...

  9. Numpy的一些学习记录

    Numpy的一些记录 产生numpy.array的方式 import numpy as np arr1 = np.array([1, 2, 3]) print(arr1) arr2 = np.zero ...

  10. 简话http请求

    一.http请求概念: 1.是指从客户端到服务器端的请求消息.包括:消息首行中,对资源的请求方法.资源的标识符及使用的协议. 包括请求(request)和响应(response) 2.过程: 域名解析 ...