当数据预处理完成后,我们就要开始进行特征工程了。

在做特征选择之前,有三件非常重要的事:跟数据提供者开会!跟数据提供者开会!跟数据提供者开会!
一定要抓住给你提供数据的人,尤其是理解业务和数据含义的人,跟他们聊一段时间。技术能够让模型起飞,前提是你和业务人员一样理解数据。
所以特征选择的第一步,其实是根据我们的目标,用业务常识来选择特征。来看完整版泰坦尼克号数据中的这些特征

其中是否存活是我们的标签。很明显,以判断“是否存活”为目的,票号,登船的舱门,乘客编号明显是无关特征,可以直接删除。姓名,舱位等级,船舱编号,也基本可以判断是相关性比较低的特征。
性别,年龄,船上的亲人数量,这些应该是相关性比较高的特征。
所以,特征工程的第一步是:理解业务。
当然了,在真正的数据应用领域,比如金融,医疗,电商,我们的数据不可能像泰坦尼克号数据的特征这样少,这样明显,那如果遇见极端情况,我们无法依赖对业务的理解来选择特征,该怎么办呢?我们有四种方法可以用来选择特征:过滤法,嵌入法,包装法,和降维算法。

#导入数据,让我们使用digit recognizor数据来一展身手

import pandas as pd
data = pd.read_csv(r"C:\work\learnbetter\micro-class\week 3 Preprocessing\digit
recognizor.csv") X = data.iloc[:,1:]
y = data.iloc[:,0] X.shape """
这个数据量相对夸张,如果使用支持向量机和神经网络,很可能会直接跑不出来。使用KNN跑一次大概需要半个小时。
用这个数据举例,能更够体现特征工程的重要性。
"""

机器学习实战基础(十三):sklearn中的数据预处理和特征工程(六)特征选择 feature_selection 简介的更多相关文章

  1. 机器学习实战基础(八):sklearn中的数据预处理和特征工程(一)简介

    1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字 ...

  2. sklearn中的数据预处理和特征工程

    小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...

  3. 机器学习实战基础(十八):sklearn中的数据预处理和特征工程(十一)特征选择 之 Wrapper包装法

    Wrapper包装法 包装法也是一个特征选择和算法训练同时进行的方法,与嵌入法十分相似,它也是依赖于算法自身的选择,比如coef_属性或feature_importances_属性来完成特征选择.但不 ...

  4. 机器学习实战基础(十七):sklearn中的数据预处理和特征工程(十)特征选择 之 Embedded嵌入法

    Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行.在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大 ...

  5. 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤

    Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...

  6. 机器学习实战基础(十一):sklearn中的数据预处理和特征工程(四) 数据预处理 Preprocessing & Impute 之 处理分类特征:编码与哑变量

    处理分类特征:编码与哑变量 在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fit的 ...

  7. 机器学习实战基础(十):sklearn中的数据预处理和特征工程(三) 数据预处理 Preprocessing & Impute 之 缺失值

    缺失值 机器学习和数据挖掘中所使用的数据,永远不可能是完美的.很多特征,对于分析和建模来说意义非凡,但对于实际收集数据的人却不是如此,因此数据挖掘之中,常常会有重要的字段缺失值很多,但又不能舍弃字段的 ...

  8. 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化

    1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...

  9. 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤

    相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...

随机推荐

  1. C#数据结构与算法系列(四):链表——单链表(Single-LinkedList)

    1.介绍: 链表是有序的列表,但是它在内存的存储如下:  链表是以节点的方式来存储,链式存储 每一个节点包含data域,next域:指向下一个节点 链表的各个节点不一定是连续存储 链表分带头节点的链表 ...

  2. Numpy中的广播机制,数组的广播机制(Broadcasting)

    这篇文章把numpy中的广播机制讲的十分透彻: https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arr ...

  3. Ubuntu16.06常见服务搭建

    摘要 系统环境Ubuntu 16.04 amd64 隔一段时间要配一次服务记不住,记录在这里方便以后安装. 目前更新了以下服务: ssh samba vimrc // 20200126更新 ssh 安 ...

  4. Andrew Ng - 深度学习工程师 - Part 1. 神经网络和深度学习(Week 4. 深层神经网络)

     =================第2周 神经网络基础=============== ===4.1  深层神经网络=== Although for any given problem it migh ...

  5. C++核心内容和机制

    备注:不局限与C++版本   一. 基础知识 数据类型和POD/Trivial 数据类型: 类型转换: NULL和nullptr: 操作符重载: 全局静态变量和成员静态变量的申明和初始化: 左值和右值 ...

  6. 不就是语法和长难句吗—笔记总结Day4

    第六课 英语的特殊结构 1.强调句型 It is...that / who / which(少见)... * 强调句型可以强调句子中所有成分(唯一不能强调谓语)*  It is obviously t ...

  7. 什么是EL表达式?

    1.什么是EL表达式? EL(Expression Language) 是为了使JSP写起来更加简单.表达式语言的灵感来自于 ECMAScript 和 XPath 表达式语言,它提供了在 JSP 中简 ...

  8. ORA-12154: TNS:could not resolve the connect identifier specified. Solved.

    进入系统属性页面 rundll32.exe shell32.dll,Control_RunDLL sysdm.cpl,, 并添加系统环境变量 ORACLE_HOME = ${path} TNS_ADM ...

  9. .net core Web API参数绑定规则

    参数推理绑定 先从一个问题说起,微信小程序按照WebAPI定义的参数传递,Get请求服务器端可以正常接收到参数,但是Post请求取不到. Web API代码(.netcore 3.1)如下: [Htt ...

  10. sendRedirect()和forward()方法的区别

    sendRedirect()和forward()方法的区别 之前好像曾经整理过,但忘了放在哪里了,好像压根就没整理过,博客里也没有,故今天重新整理一下. 我们知道页面之间的跳转有两种方式:重定向与转发 ...