题目

先上一个链接:十个利用矩阵乘法解决的经典题目

这个题目和第二个类似

由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据一些结果,我们可以在计算过程中不断取模,避免高精度运算。

思路:如果直接相乘的话,时间复杂度是O(n*n*k)。

耗时太长,这里可以采用二分的思想。

另设置一个b[]数组,存储k为奇数的时候的 a[]矩阵的乘积。

k为偶数时,直接把a[]相乘,就相当于使k次相乘减少了一半。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int mo = ;
int n, ans; struct node
{
int m[][];
};
node mult(node a, node b)
{
node c;
int i, j, k;
for(i = ; i <= n; i++)
for(j = ; j <= n; j++)
{
c.m[i][j] = ;
for(k = ; k <= n; k++)
c.m[i][j] += a.m[i][k]*b.m[k][j];
c.m[i][j] %= mo;
}
return c;
}
int main()
{
node a, b;
int t, k;
int i, j;
cin>>t;
while(t--)
{
ans = ;
cin>>n>>k;
for(i = ; i <= n; i++)
for(j = ; j <= n; j++)
{
cin>>a.m[i][j];
if(i == j)
b.m[i][j] = ;
else
b.m[i][j] = ;
}
while(k > )
{
if(k%==)
{
k--;
b = mult(a, b);
}
else
{
k = k/;
a = mult(a, a);
}
}
b = mult(a, b);
for(i = ; i <= n; i++)
{
ans += b.m[i][i];
ans %= mo;
}
cout<<ans<<endl;
}
return ;
}

hdu 1575 Tr A (矩阵快速幂入门题)的更多相关文章

  1. HDU.1575 Tr A ( 矩阵快速幂)

    HDU.1575 Tr A ( 矩阵快速幂) 点我挑战题目 题意分析 直接求矩阵A^K的结果,然后计算正对角线,即左上到右下对角线的和,结果模9973后输出即可. 由于此题矩阵直接给出的,题目比较裸. ...

  2. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

  3. POJ_Fibonacci POJ_3070(矩阵快速幂入门题,附上自己写的矩阵模板)

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10521   Accepted: 7477 Descri ...

  4. hdu1575 Tr A 矩阵快速幂模板题

    hdu1575   TrA 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 都不需要构造矩阵,矩阵是题目给的,直接套模板,把对角线上的数相加就好 ...

  5. HDU1575:Tr A(矩阵快速幂模板题)

    http://acm.hdu.edu.cn/showproblem.php?pid=1575   #include <iostream> #include <string.h> ...

  6. hdu 2604 Queuing(矩阵快速幂乘法)

    Problem Description Queues and Priority Queues are data structures which are known to most computer ...

  7. HDU 1575 Tr A 【矩阵经典2 矩阵快速幂入门】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Me ...

  8. HDU 6470 Count 【矩阵快速幂】(广东工业大学第十四届程序设计竞赛 )

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6470 Count Time Limit: 6000/3000 MS (Java/Others)    ...

  9. hdu 3117 Fibonacci Numbers 矩阵快速幂+公式

    斐波那契数列后四位可以用快速幂取模(模10000)算出.前四位要用公式推 HDU 3117 Fibonacci Numbers(矩阵快速幂+公式) f(n)=(((1+√5)/2)^n+((1-√5) ...

随机推荐

  1. WPF中使用ValueConverter来实现“范围条件触发器”

    在WPF中,我们知道界面层可以通过Trigger触发器实现“条件”——“赋值”的功能 属性触发器Property Trigger:当Dependency Property的值发生改变时触发.数据触发器 ...

  2. OC的@property 和 @synthesize id

    学习java的JDBC,成员变量的setter和getter,eclipse都能帮我们自动生成:当然xcode这款编译器也很强大,也能自动生成: 1:@property @property是写在类的声 ...

  3. iOS VideoToolbox硬编H.265(HEVC)H.264(AVC):1 概述

    本文档尝试用Video Toolbox进行H.265(HEVC)硬件编码,视频源为iPhone后置摄像头.去年做完硬解H.264,没做编码,技能上感觉有些缺失.正好刚才发现CMFormatDescri ...

  4. Oracle的substr函数简单用法

    substr(字符串,截取开始位置,截取长度) //返回截取的字 substr('Hello World',0,1) //返回结果为 'H'  *从字符串第一个字符开始截取长度为1的字符串 subst ...

  5. 微信诡异的 40029 不合法的oauth_code

    最近几天在做微信公共平台开发,之前一切正常运行着,发布一套程序出去之后,发现时不时的报错! 小总结下问题出现原因:微信oauth2.0 接口说明 第一步:用户同意授权,获取code 在确保微信公众账号 ...

  6. 华为章宇:如何学习开源项目及Ceph的浅析

    转自http://www.csdn.net/article/2014-04-10/2819247-how-to-learn-opensouce-project-&-ceph 摘要:开源技术的学 ...

  7. Makedown常用符号整理

    整理自:http://www.jianshu.com/p/1e402922ee32 不过这里发现博客园的makedown语法支持还不完善,代码语法显示挺有问题的,比较遗憾. 标题 # 一级标题## 二 ...

  8. sqlserver mdf ldf文件导入

    EXEC  sp_attach_db  @dbname  =  '你的数据库名', @filename1  =  'mdf文件路径(包缀名)', @filename2  =  'Ldf文件路径(包缀名 ...

  9. PHP中应用Service Locator服务定位及单例模式

    单例模式将一个对象实例化后,放在静态变量中,供程序调用. 服务定位(ServiceLocator)就是对象工场Factory,调用者对象直接调用Service Locator,与被调用对象减轻了依赖关 ...

  10. JAVA Hibernate工作原理及为什么要用(转)

    hibernate 简介:hibernate是一个开源框架,它是对象关联关系映射的框架,它对JDBC做了轻量级的封装,而我们java程序员可以使用面向对象的思想来操纵数据库.hibernate核心接口 ...