Suggester

Suggester - a flexible "autocomplete" component.(搜索推荐)

A common need in search applications is suggesting query terms or phrases based on incomplete user input. These completions may come from a dictionary that is based upon the main index or upon any other arbitrary dictionary. It's often useful to be able to provide only top-N suggestions, either ranked alphabetically or according to their usefulness for an average user (e.g. popularity, or the number of returned results).(对搜索出的suggestion进行排序,可以按populatity排序,也可以按字母顺序排序,还可以自定义按用户搜索频率排序(热搜))。

Solr 3.1 includes a component called Suggester that provides this functionality.

Suggester reuses much of the SpellCheckComponent infrastructure, so it also reuses many common SpellCheck parameters, such as spellcheck=true orspellcheck.build=true, etc. The way this component is configured in solrconfig.xml is also very similar:

  <searchComponent class="solr.SpellCheckComponent" name="suggest">
<lst name="spellchecker">
<str name="name">suggest</str>
<str name="classname">org.apache.solr.spelling.suggest.Suggester</str>
<str name="lookupImpl">org.apache.solr.spelling.suggest.tst.TSTLookupFactory</str>
<!-- Alternatives to lookupImpl:
org.apache.solr.spelling.suggest.fst.FSTLookupFactory [finite state automaton]
org.apache.solr.spelling.suggest.fst.WFSTLookupFactory [weighted finite state automaton]
org.apache.solr.spelling.suggest.jaspell.JaspellLookupFactory [default, jaspell-based]
org.apache.solr.spelling.suggest.tst.TSTLookupFactory [ternary trees]
-->
<str name="field">name</str> <!-- the indexed field to derive suggestions from -->
<float name="threshold">0.005</float>
<str name="buildOnCommit">true</str>
<!--
<str name="sourceLocation">american-english</str>
-->
</lst>
</searchComponent>
<requestHandler class="org.apache.solr.handler.component.SearchHandler" name="/suggest">
<lst name="defaults">
<str name="spellcheck">true</str>
<str name="spellcheck.dictionary">suggest</str>
<str name="spellcheck.onlyMorePopular">true</str>
<str name="spellcheck.count">5</str>
<str name="spellcheck.collate">true</str>
</lst>
<arr name="components">
<str>suggest</str>
</arr>
</requestHandler>

The look-up of matching suggestions in a dictionary is implemented by subclasses of the Lookup class - the implementations that are included in Solr are:

在查询字典当中,匹配推荐的查询实现类在solr中如下:

  • JaspellLookup - tree-based representation based on Jaspell,(是一种更为复杂的基于三叉树的查询)

  • TSTLookup - ternary tree based representation, capable of immediate data structure updates,(一种具备及时数据结构更新的三叉树)
  • FSTLookup - automaton based representation; slower to build, but consumes far less memory at runtime (see performance notes below).(特点:构建查询树比较慢,但运行时会消耗比较小的内存)
  • WFSTLookup - weighted(加权) automaton representation: an alternative to FSTLookup for more fine-grained ranking. Solr 3.6+(FSTLookup的替代,拥有更加精细的排序功能)

For practical purposes all of the above implementations will most likely run at similar speed when requests are made via the HTTP stack (which willbecome the bottleneck). Direct benchmarks of these classes indicate that (W)FSTLookup provides better performance compared to the other two methods, at a much lower memory cost.(这些对象的直接基准表明,(W)FSTLookup性能要好于前两个,在运行时消耗更少的内存。) JaspellLookup can provide "fuzzy" suggestions, though this functionality is not currently exposed (it's a one line change inJaspellLookup). Support for infix-suggestions is planned for FSTLookup (which would be the only structure to support these).

An example of an autosuggest request:

http://localhost:8983/solr/suggest?q=ac

And the corresponding response:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<lst name="spellcheck">
<lst name="suggestions">
<lst name="ac">
<int name="numFound">2</int>
<int name="startOffset">0</int>
<int name="endOffset">2</int>
<arr name="suggestion">
<str>acquire</str>
<str>accommodate</str>
</arr>
</lst>
<str name="collation">acquire</str>
</lst>
</lst>
</response>

Configuration

The configuration snippet above shows a few common configuration parameters. A complete list of them is best found in the source code of each Lookup class, but here is an overview:

SpellCheckComponent configuration

searchComponent/@name - arbitrary name for this component

spellchecker list:

  • name - a symbolic name of this spellchecker (can be later referred to in URL parameters and in SearchHandler configuration - see the section below)

  • classname - Suggester, to provide the autocomplete functionality

  • lookupImpl - Lookup implementation. These in-memory implementations are available:(这些查询在内存中完成)

    • org.apache.solr.spelling.suggest.tst.TSTLookupFactory - a simple compact ternary trie based lookup

    • org.apache.solr.spelling.suggest.jaspell.JaspellLookupFactory - a more complex lookup based on a ternary trie from the JaSpell project.

    • org.apache.solr.spelling.suggest.fst.FSTLookupFactory - automaton-based lookup

    • org.apache.solr.spelling.suggest.fst.WFSTLookupFactory - weighted automaton-based lookup

  • buildOnCommit - if set to true then the Lookup data structure will be rebuilt after commit. If false (default) then the Lookup data will be built only when requested (by URL parameter spellcheck.build=true). NOTE: currently implemented Lookup-s keep their data in memory, so unlike spellchecker data this data is discarded on core reload and not available until you invoke the build command, either explicitly or implicitly via commit.

  • sourceLocation - location of the dictionary file. If not empty then this is a path to a dictionary file (see below). If this value is empty then the main index will be used as a source of terms and weights.

  • field - if sourceLocation is empty then terms from this field in the index will be used when building the trie.

  • threshold - threshold is a value in [0..1] representing the minimum fraction of documents (of the total) where a term should appear, in order to be added to the lookup dictionary.

  • storeDir - where to store the index data on the disk (else use in-memory).

Dictionary

When a file-based dictionary is used (non-empty sourceLocation parameter above) then it's expected to be a plain text file in UTF-8 encoding. Blank lines and lines that start with a '#' are ignored. The remaining lines must consist of either a string without literal TAB (\u0007) character, or a string and a TAB separated floating-point weight.

Example:

# This is a sample dictionary file.
acquire
accidentally\t2.0
accommodate\t3.0

If weight is missing it's assumed to be equal 1.0. Weights affect the sorting of matching suggestions when spellcheck.onlyMorePopular=true is selected - weights are treated as "popularity" score, with higher weights preferred over suggestions with lower weights.

Please note that the format of the file is not limited to single terms but can also contain phrases - which is an improvement over the TermsComponentthat you could also use for a simple version of autocomplete functionality.

FSTLookup has a built-in mechanism to discretize (离散)weights into a fixed set of buckets (to speed up suggestions). The number of buckets is configurable.

WFSTLookup does not use buckets, but instead a shortest path algorithm. Note that it expects weights to be whole numbers.

Threshold parameter

As mentioned above, if the sourceLocation parameter is empty then the terms from a field indicated by the field parameter are used. It's often the case that due to imperfect source data there are many uncommon or invalid terms that occur only once in the whole corpus (e.g. OCR errors, typos, etc). According to the Zipf's law this actually forms the majority of terms, which means that the dictionary built indiscriminately from a real-life index would consist mostly of uncommon terms, and its size would be enormous. In order to avoid this and to reduce the size of in-memory structures it's best to set thethreshold parameter to a value slightly above zero (0.5% in the example above). This already vastly reduces the size of the dictionary by skipping "hapax legomena" while still preserving most of the common terms. This parameter has no effect when using a file-based dictionary - it's assumed that only useful terms are found there. (Threshold parameter的设置能够有效控制不受限制的或者基于不常用的terms的查询字典的构建,减少内存占用量)

SearchHandler configuration

In the example above we add a new handler that uses SearchHandler with a single SearchComponent that we just defined, namely the suggest component. Then we define a few defaults for this component (that can be overridden with URL parameters):

  • spellcheck=true - because we always want to run the Suggester for queries submitted to this handler.

  • spellcheck.dictionary=suggest - this is the name of the dictionary component that we configured above.

  • spellcheck.onlyMorePopular=true - if this parameter is set to true then the suggestions will be sorted by weight ("popularity") - the count parameter will effectively limit this to a top-N list of best suggestions. If this is set to false then suggestions are sorted alphabetically.

  • spellcheck.count=5 - specifies to return up to 5 suggestions.

  • spellcheck.collate=true - to provide a query collated with the first matching suggestion.

Tips and tricks(使用技巧)

* Use (W)FSTLookup to conserve memory (unless you need a more sophisticated matching, then look at JaspellLookup). There are some benchmarks of all four implementations: SOLR-1316 (outdated) and a bit newer here: SOLR-2378, and here: LUCENE-3714. The class to perform these benchmarks is in the source tree and is called LookupBenchmarkTest.

* Use threshold parameter to limit the size of the trie, to reduce the build time and to remove invalid/uncommon terms. Values below 0.01 should be sufficient, greater values can be used to limit the impact of terms that occur in a larger portion of documents. Values above 0.5 probably don't make much sense.

* Don't forget to invoke spellcheck.build=true after core reload. Or extend the Lookup class to do this on init(), or implement the load/save methods in Lookup to persist this data across core reloads.

* If you want to use a dictionary file that contains phrases (actually, strings that can be split into multiple tokens by the default QueryConverter) then define a different QueryConverter like this:

  <!--
The SpellingQueryConverter to convert raw (CommonParams.Q) queries into tokens. Define a simple regular expression
in your QueryAnalyzer chain if you want to strip off field markup, boosts, ranges, etc.
-->
<queryConverter name="queryConverter" class="org.apache.solr.spelling.SuggestQueryConverter"/>

An example for setting up a typical case of auto-suggesting phrases (e.g. previous queries from query logs with associated score) is here:

下一篇博客中,将详细阐述搜索推荐的核心算法。

原创:Solr Wiki 中关于Suggester(搜索推荐)的简单解读的更多相关文章

  1. Solr Wiki文档

    相比ElasticSearch,Solr的文档详尽丰富,同时也显得冗余啰嗦. Solr的官方文档有两个地方: Solr官方教程 Solr社区维基 本文主要列出一些Solr Wiki中的主要讨论主题,方 ...

  2. solr注意事项-solrconfig中的默认搜索域会覆盖schema中的默认搜索域,注意copyfeild中被corp的字段搜索

    结论一:solrconfig.xml的默认搜索配置权限高于schema.xml中的默认搜索配置! 配置1:solrconfig.xml文件中关于select的配置: <requestHandle ...

  3. SolrCloud:依据Solr Wiki的译文

    本文是作者依据Apache Solr Document的译文.翻译不对或者理解不到位的地方欢迎大家指正!谢谢! Nodes, Cores, Cluster and Leaders Nodes and ...

  4. solr特点八:Spatial(空间搜索)

    前言 在美团CRM系统中,搜索商家的效率与公司的销售额息息相关,为了让BD们更便捷又直观地去搜索商家,美团CRM技术团队基于Solr提供了空间搜索功能,其中移动端周边商家搜索和PC端的地图模式搜索功能 ...

  5. solr服务中集成IKAnalyzer中文分词器、集成dataimportHandler插件

    昨天已经在Tomcat容器中成功的部署了solr全文检索引擎系统的服务:今天来分享一下solr服务在海量数据的网站中是如何实现数据的检索. 在solr服务中集成IKAnalyzer中文分词器的步骤: ...

  6. 基于Solr和Zookeeper的分布式搜索方案的配置

    1.1 什么是SolrCloud SolrCloud(solr 云)是Solr提供的分布式搜索方案,当你需要大规模,容错,分布式索引和检索能力时使用 SolrCloud.当一个系统的索引数据量少的时候 ...

  7. Solr查询中涉及到的Cache使用及相关的实现【转】

    转自:http://www.cnblogs.com/phinecos/archive/2012/05/24/2517018.html 本文将介绍Solr查询中涉及到的Cache使用及相关的实现.Sol ...

  8. 24.通过ngram分词机制实现index-time搜索推荐

    一.ngram和index-time搜索推荐原理     1.什么是ngram     假设有一个单词:quick,在5种长度下的ngram情况如下: ngram length=1,q u i c k ...

  9. 23.match_phrase_prefix实现search-time搜索推荐

    主要知识点: 搜索推荐的使用场景 用法 原理 一.搜索推荐的使用场景 搜索推荐,就是在你做搜索时,当你写出一部搜索词时,es会自提示接下来要写的词,比如当你在搜索hello w 时,如果es中有如下文 ...

随机推荐

  1. Non-Maximum Suppression(非极大值抑制)

    定义与介绍(NMS 以及soft-NMS也有简单的介绍): https://www.cnblogs.com/makefile/p/nms.html IoU的介绍这篇写的不错: https://oldp ...

  2. JDK提供的原子类和AbstractQueuedSynchronizer(AQS)

    大致分成: 1.原子更新基本类型 2.原子更新数组 3.原子更新抽象类型 4.原子更新字段 import java.util.concurrent.atomic.AtomicInteger; impo ...

  3. WPF 程序如何移动焦点到其他控件

    原文:WPF 程序如何移动焦点到其他控件 WPF 中可以使用 UIElement.Focus() 将焦点设置到某个特定的控件,也可以使用 TraversalRequest 仅仅移动焦点.本文介绍如何在 ...

  4. C#程序结构(学习笔记01)

    C#程序结构 [原文参考官方教程] https://docs.microsoft.com/zh-cn/dotnet/csharp/tour-of-csharp/program-structure C# ...

  5. 一张图看懂SharpImage

    通过下面的图片,可以瞬间看懂整个类库的脉络.图片比较大,如果看不清,可

  6. Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient报错,问题排查

    背景 最近在整合pyspark与hive,新安装spark-2.3.3以客户端的方式访问hive数据,运行方式使用spark on yarn,但是在配置spark读取hive数据的时候,这里直接把hi ...

  7. centos7 设置 查看 开机 启动项

    1.查看开机自启项centos7自启项已不用chkconfig改为:systemctl list-unit-files左边是服务名称,右边是状态,enabled是开机启动,disabled是开机不启动 ...

  8. Javap与JVM指令

    一.javap命令简述 javap是jdk自带的反解析工具.它的作用就是根据class字节码文件,反解析出当前类对应的code区(汇编指令).本地变量表.异常表和代码行偏移量映射表.常量池等等信息.当 ...

  9. Java编程规范(命名规则)

    1.目的 编程规范是对编程的一种约定,主要作用是增强代码的可读性和可维护性,便于代码重用. 2.命名规则 首先要求程序中的各个要素都遵守命名规则,然后在编码中严格按照编码格式编写代码.命名规则包括以下 ...

  10. 在SQL查询结果中添加自增列的两种方法

    解决办法<一>:如果想查询出这个表的信息,并添加一列连续自增的ID,可用如下查询语句: SELECT Row_Number() over ( order by getdate() ) as ...