【meet in the mid】【qbxt2019csp刷题班day1C】birthday
Description
给定一个长度为 \(n\) 序列,值域为 \([1, v]\),每次选择一段区间,要求在这个区间上选择一些元素加入到两个集合中,每个元素要么不选要么只能加入一个集合,要求两个集合非空且元素和相等,问能否实现。
同时要求区间修改元素为自身的立方对 \(v\) 取模的结果。
Limatations
\(1 \leq n \leq 10^5\),\(1 \leq v \leq 1000\)
Solution
考虑一段长度为 \(len\) 的区间,考虑每个点有选入集合和不选入集合两种可能,所以所有选择的种数一共有 \(2^{len}\) 种。考虑由于值域为 \(v\),所以可能出现的权值和一共有 \(len \times v\) 种。考虑当 \(2^{len} > len \times v\) 时,一定至少有两个不同的选择得到了相同的权值。考虑这两个选择可能会选择相同的元素,那么直接将这些相同的元素都去掉,由于去掉的元素相同,最终得到的权值和依然是相同的,并且两个集合无交。因此这种情况一定能实现。
解方程
\[2^{len} > len \times v\]
两侧同时取 \(\log\),整理得
\[len - \log len > \log v\]
显然 \(v\) 取最大值时,左侧取最大值,因此有
\[len - \log len > 10\]
显然当 \(len\) 充分大时,左侧的值与 \(len\) 正相关,枚举 \(len\) 得到
\[len > 13\]
因此当 \(len \geq 14\) 时,可以直接输出 \(Yes\),下面考虑 \(len \leq 13\) 的情况。
考虑最简单的方法是爆搜,枚举每个元素不选还是选入集合 \(A\) 还是选入集合 \(B\),时间复杂度 \(O(3^{len})\),由于一共有 \(m\) 次查询,时间复杂度超标。
考虑进行 meet in the middle,先搜索区间前 \(6\) 个元素的所有情况,记录所有可能的 \(A\) \(B\) 两集合元素和之差,再搜索区间后 \(7\) 个元素的情况,同样记录所有可能的元素和之差。一旦有一个差在两侧都有出现,那么只需要一个集合左边选较大的右边选较小的;另一个集合左边选较小的右边选较大的,即可得到两个合法的集合,反之则不能得到。
因此这这样的复杂度为 \(O(2^{len / 2})\),由于有 \(m\) 次操作,实际运算量与 \(2^7 \times m\) 同阶,可以通过本题。
考虑区间修改操作,只需要分块或者线段树即可快速维护。
Summary
zxy 天下第一
【meet in the mid】【qbxt2019csp刷题班day1C】birthday的更多相关文章
- 【套题】qbxt国庆刷题班D2
D2 今天的题感觉还是好妙的 T1 传送门 Description 现在有一张\(n\)个节点\(m\)条边的无向连通图\(G=(V,E)\),满足这张图中不存在长度大于等于3的环且图中没有重边和自环 ...
- 【套题】qbxt国庆刷题班D1
Day1 事实上D1的题目还是比较简单的= =然而D1T2爆炸了就十分尴尬--错失一波键盘 看题 T1 传送门 Description 现在你手里有一个计算器,上面显示了一个数\(S\),这个计算器十 ...
- 10.24afternoon清北学堂刷题班
/* 这是什么题... */ #include<iostream> #include<cstdio> #include<cstring> #include<q ...
- 清北刷题班day3 morning
P99zhx: 竞赛时间:???? 年?? 月?? 日??:??-??:??题目名称 a b c名称 a b c输入 a.in b.in c.in输出 a.out b.out c.out每个测试点时限 ...
- 提高组刷题班 DAY 1 上午
低仿机器人(robo,1s,64M) 题解 大模拟 代码 #include <cstdio> #include <cstring> #include <iostream& ...
- 10.27night清北刷题班
/* 枚举每个部分的总和,利用前缀和进行检验. 如果能分成4部分就一定能分成2部分,就筛了一边素数优化.清空数组!!! */ #include<bits/stdc++.h> #define ...
- 【BZOJ-4590】自动刷题机 二分 + 判定
4590: [Shoi2015]自动刷题机 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 156 Solved: 63[Submit][Status ...
- NOI题库分治算法刷题记录
今天晚自习机房刷题,有一道题最终WA掉两组,极其不爽,晚上回家补完作业欣然搞定它,特意来写篇博文来记录下 (最想吐槽的是这个叫做分治的分类,里面的题目真的需要分治吗...) 先来说下分治法 分治法的设 ...
- BZOJ4590 自动刷题机
Description 曾经发明了信号增幅仪的发明家SHTSC又公开了他的新发明:自动刷题机--一种可以自动AC题目的神秘装置.自动 刷题机刷题的方式非常简单:首先会瞬间得出题目的正确做法,然后开始写 ...
随机推荐
- ElasticSearch6.3.2源码分析之节点连接实现
ElasticSearch6.3.2源码分析之节点连接实现 这篇文章主要分析ES节点之间如何维持连接的.在开始之前,先扯一下ES源码阅读的一些心得:在使用ES过程中碰到某个问题,想要深入了解一下,可源 ...
- 【04】Saltstack:配置管理
写在前面的话 当我们需要进行一系列可重复且复杂的操作的时候,如果还继续用传统的 cmd.run 来执行显然难以满足我们的需求.这时候就会在想一个问题,我们能不能把这些操作编辑成一个类似脚本的操作,我们 ...
- USE11 上oracle11导入数据中文乱码
分类专栏: 数据库 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/suqimm/artic ...
- 2019-11-29-C#-通过编程的方法在桌面创建回收站快捷方式
原文:2019-11-29-C#-通过编程的方法在桌面创建回收站快捷方式 title author date CreateTime categories C# 通过编程的方法在桌面创建回收站快捷方式 ...
- Mysql中分组函数
查询每个工种的最高薪资
- asp.net 版本一键升级,后台直接调用升级脚本
应客户需求,要求实现一个版本一键升级的功能,咨询过同事之后弄了个demo出来,后台代码如下: //DBConnModelInfo:连接字符串的对象 (包含数据库实例名,数据库名,登陆名,登陆密码) p ...
- Golang中,Aes加解密
今天在用Golang解析php那边用Aes加密的一个key.网上大多是用base64将结果编码一下.而且用到了向量.我php 那边没有用到向量.所以golang这边也是要去掉的.参考网站的改了下.能够 ...
- 微服务架构 ------ 插曲 Linux平台 Ubuntu的安装
1.一定要通过自定义安装 2.选择的硬件兼容性选择 14.x 这里介绍一下红框内的东西,是为了做虚拟存储使用的,也就是一批服务器对外展示位一个服务器,类似于服务器集群 3.选择稍后安装操作系统,如 ...
- elasticsearch原理学习
用es也差不多一年左右了,但是都是只会用,底层做了什么一窍不通,没有核心竞争力,循序渐进,一个一个攻破,理解的多了,读的多了,自然能力就上去了,es底层是基于lucene的,所以今天先从lucene下 ...
- 设计模式之(十三)外观模式(Facade)
外观模式思想 历史上牛人中成功逆袭,实现人生辉煌的人很多,这群人最耀眼的无疑是明太祖朱元璋,从一个放牛讨饭的最低层小屌丝逆袭到人类权力顶峰开国皇帝,确实是我等膜拜的对象.在发不断的发展过程中,其实就在 ...