uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2119
11178 - Morley's Theorem
Time limit: 3.000 seconds
Problem D
Morley’s Theorem
Input: Standard Input
Output: Standard Output
Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.
Input
First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers xa , ya,xb , yb,xc , yc. This six integers actually indicates that the Cartesian coordinates of point A, B and C are (xa , ya) , (xb , yb)and (xc , yc)respectively. You can assume that the area of triangle ABC is not equal to zero, 0 <= xa, ya , xb , xc , yb , yc <= 1000 and the points A, B and C are in counter clockwise order.
Output
For each line of input you should produce one line of output. This line contains six floating point numbers xd , yd , xe , ye , xf , yf separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are (xd , yd) , (xe , ye) , (xf , yf)respectively. Errors less than 10 ^ -5will be accepted.
Sample Input Output for Sample Input
|
2 1 1 2 2 1 2 0 0 100 0 50 50 |
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975 56.698730 25.000000 43.301270 25.000000 50.000000 13.397460 |
Problemsetters: Shahriar Manzoor
Special Thanks: Joachim Wulff
分析:
STL
AC代码:
// UVa11178 Morley's Theorem
#include<cstdio>
#include<cmath>
struct Point {
double x, y;
Point(double x=, double y=):x(x),y(y) { }
};
typedef Point Vector;
Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); }
Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); }
Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); }
double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; }
double Length(const Vector& A) { return sqrt(Dot(A, A)); }
double Angle(const Vector& A, const Vector& B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; }
Point GetLineIntersection(const Point& P, const Point& v, const Point& Q, const Point& w) {
Vector u = P-Q;
double t = Cross(w, u) / Cross(v, w);
return P+v*t;
}
Vector Rotate(const Vector& A, double rad) {
return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
}
Point read_point() {
double x, y;
scanf("%lf%lf", &x, &y);
return Point(x,y);
}
Point getD(Point A, Point B, Point C) {
Vector v1 = C-B;
double a1 = Angle(A-B, v1);
v1 = Rotate(v1, a1/);
Vector v2 = B-C;
double a2 = Angle(A-C, v2);
v2 = Rotate(v2, -a2/);
return GetLineIntersection(B, v1, C, v2);
}
int main() {
int T;
Point A, B, C, D, E, F;
scanf("%d", &T);
while(T--) {
A = read_point();
B = read_point();
C = read_point();
D = getD(A, B, C);
E = getD(B, C, A);
F = getD(C, A, B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n", D.x, D.y, E.x, E.y, F.x, F.y);
}
return ;
}
uva 11178 - Morley's Theorem的更多相关文章
- UVA 11178 Morley's Theorem (坐标旋转)
题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...
- UVA 11178 Morley's Theorem(几何)
Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...
- UVa 11178:Morley’s Theorem(两射线交点)
Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...
- UVA 11178 - Morley's Theorem 向量
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- Uva 11178 Morley's Theorem 向量旋转+求直线交点
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...
- UVA 11178 Morley's Theorem(旋转+直线交点)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...
- UVa 11178 Morley's Theorem (几何问题)
题意:给定三角形的三个点,让你求它每个角的三等分线所交的顶点. 析:根据自己的以前的数学知识,应该很容易想到思想,比如D点,就是应该求直线BD和CD的交点, 以前还得自己算,现在计算机帮你算,更方便, ...
- 简单几何(求交点) UVA 11178 Morley's Theorem
题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /*********************************************** ...
- UVA 11178 Morley's Theorem 计算几何模板
题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...
随机推荐
- Vaadin
Vaadin 这个是用Java 做的 一个人就可以完成 你去网上搜一下 教程 https://vaadin.com/home 官网 http://baike.baidu.com/link?url ...
- php数据访问:pdo用法、事物回滚功能和放sql注入功能
PDO: 一.含义: 数据访问抽象层 二.作用 通过PDO能够访问其它的数据库 三. 用法: 1.造对象 ① $pdo ...
- ubuntu下opencv在Qt中的使用
1. 编译安装OpenCV2.4.9 本博已有文章描述 2. 安装Qt和QtCreator 从qt-project.org 下载Qt安装文件 qt-opensource-linux-x64-5.4. ...
- 用户登录验证例题用的ajax
1.登录页面 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www. ...
- ngrok的使用
windows的ngrok配置: 步骤一:下载ngrok http://pan.baidu.com/s/1jH0s8o2 步骤二:如果你的国外网址没被墙就直接使用cmd命令行使用. 国内ngrok配置 ...
- mysql 存储过程--- 创建,调用,删除
DELIMITER //CREATE PROCEDURE p_addscore(nums INT,OUT retrows INT)BEGINDECLARE i INT DEFAULT 0;add_lo ...
- 汇编查看StackFrame栈帧
INCLUDE Irvine32.inc myProc PROTO, x:DWORD, y:DWORD .data .code main proc mov eax,0EAEAEAEAh mov ebx ...
- MongoDB的find用法
0.查询符合条件数据的总条数 如:db.list名.find({条件}).count(); 1.返回指定的键值:db.list.find({条件},{name:"任意值",age: ...
- JNI字段描述符(转)
转载自http://fgsink.blog.163.com/blog/static/16716997020124310169911/ “([Ljava/lang/String;)V” 它是一种对函数返 ...
- [LeetCode]题解(python):081 - Search in Rotated Sorted Array II
题目来源 https://leetcode.com/problems/search-in-rotated-sorted-array-ii/ Follow up for "Search in ...