uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2119
11178 - Morley's Theorem
Time limit: 3.000 seconds
Problem D
Morley’s Theorem
Input: Standard Input
Output: Standard Output
Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.
Input
First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers xa , ya,xb , yb,xc , yc. This six integers actually indicates that the Cartesian coordinates of point A, B and C are (xa , ya) , (xb , yb)and (xc , yc)respectively. You can assume that the area of triangle ABC is not equal to zero, 0 <= xa, ya , xb , xc , yb , yc <= 1000 and the points A, B and C are in counter clockwise order.
Output
For each line of input you should produce one line of output. This line contains six floating point numbers xd , yd , xe , ye , xf , yf separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are (xd , yd) , (xe , ye) , (xf , yf)respectively. Errors less than 10 ^ -5will be accepted.
Sample Input Output for Sample Input
|
2 1 1 2 2 1 2 0 0 100 0 50 50 |
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975 56.698730 25.000000 43.301270 25.000000 50.000000 13.397460 |
Problemsetters: Shahriar Manzoor
Special Thanks: Joachim Wulff
分析:
STL
AC代码:
// UVa11178 Morley's Theorem
#include<cstdio>
#include<cmath>
struct Point {
double x, y;
Point(double x=, double y=):x(x),y(y) { }
};
typedef Point Vector;
Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); }
Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); }
Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); }
double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; }
double Length(const Vector& A) { return sqrt(Dot(A, A)); }
double Angle(const Vector& A, const Vector& B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; }
Point GetLineIntersection(const Point& P, const Point& v, const Point& Q, const Point& w) {
Vector u = P-Q;
double t = Cross(w, u) / Cross(v, w);
return P+v*t;
}
Vector Rotate(const Vector& A, double rad) {
return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
}
Point read_point() {
double x, y;
scanf("%lf%lf", &x, &y);
return Point(x,y);
}
Point getD(Point A, Point B, Point C) {
Vector v1 = C-B;
double a1 = Angle(A-B, v1);
v1 = Rotate(v1, a1/);
Vector v2 = B-C;
double a2 = Angle(A-C, v2);
v2 = Rotate(v2, -a2/);
return GetLineIntersection(B, v1, C, v2);
}
int main() {
int T;
Point A, B, C, D, E, F;
scanf("%d", &T);
while(T--) {
A = read_point();
B = read_point();
C = read_point();
D = getD(A, B, C);
E = getD(B, C, A);
F = getD(C, A, B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n", D.x, D.y, E.x, E.y, F.x, F.y);
}
return ;
}
uva 11178 - Morley's Theorem的更多相关文章
- UVA 11178 Morley's Theorem (坐标旋转)
题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...
- UVA 11178 Morley's Theorem(几何)
Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...
- UVa 11178:Morley’s Theorem(两射线交点)
Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...
- UVA 11178 - Morley's Theorem 向量
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- Uva 11178 Morley's Theorem 向量旋转+求直线交点
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...
- UVA 11178 Morley's Theorem(旋转+直线交点)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...
- UVa 11178 Morley's Theorem (几何问题)
题意:给定三角形的三个点,让你求它每个角的三等分线所交的顶点. 析:根据自己的以前的数学知识,应该很容易想到思想,比如D点,就是应该求直线BD和CD的交点, 以前还得自己算,现在计算机帮你算,更方便, ...
- 简单几何(求交点) UVA 11178 Morley's Theorem
题目传送门 题意:莫雷定理,求三个点的坐标 分析:训练指南P259,用到了求角度,向量旋转,求射线交点 /*********************************************** ...
- UVA 11178 Morley's Theorem 计算几何模板
题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...
随机推荐
- android imageButton 点击按钮前中后,按钮颜色的变化
我们在开发的过程中,往往为了美化界面的需要,会修改按钮的默认外观,而因为Android中的按钮有三种状态—默认,被点击,被选中.所以,如果要改变按钮的外观,需要对这三种情况都做出修改,也许在以往,我们 ...
- 取url的键值对,location的search:从?开始的字符串
function urlArgs(){ var args=""; var query=location.search.substring(1);//去除问号 var pairs=q ...
- Memcached Java Client API详解
针对Memcached官方网站提供的java_memcached-release_2.0.1版本进行阅读分析,Memcached Java客户端lib库主要提供的调用类是SockIOPool和MemC ...
- Java进程间通信
传统的进程间通信的方式有大致如下几种: (1) 管道(PIPE) (2) 命名管道(FIFO) (3) 信号量(Semphore) (4) 消息队列(MessageQueue) (5) ...
- Python 汉字简体和繁体的相互转换
其实利用python实现汉字的简体和繁体相互转早有人做过,并发布到github上了,地址:https://github.com/skydark/nstools/tree/master/zhtools ...
- C++ 简易时间类
.h file #ifndef LIBFRAME_DATETIME_H_ #define LIBFRAME_DATETIME_H_ #include <stdint.h> #include ...
- for循环数据节点
1.需要实现的功能,动态填充多条银行卡信息 2.dom结构 3.数据节点 4.实现方式 //获取银行卡基本信息 CmnAjax.PostData("Handler/Users/Users.a ...
- Arcgis for JS之Cluster聚类分析的实现(基于区域范围的)
原文:Arcgis for JS之Cluster聚类分析的实现(基于区域范围的) 咱们书接上文,在上文,实现了基于距离的空间聚类的算法实现,在本文,将继续介绍空间聚类之基于区域范围的实现方式,好了,闲 ...
- magento多语言中文语言包
语言包key:http://connect20.magentocommerce.com/community/Mage_Locale_zh_CN
- Ⅰ.net通信指前提
①大概搜索了一下,一般提到了这三种居多: Webservice:基于B/S的,可以对外发布方法 Socket:一种网络数据交换模型,Socket接口是TCP/IP网络的API,有三个主要因素:地址.端 ...