Bone Collector II

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4178    Accepted Submission(s): 2174

Problem Description
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

If the total number of different values is less than K,just ouput 0.

 
Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.

 
Output
One integer per line representing the K-th maximum of the total value (this number will be less than 231).

 
Sample Input
3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
 
Sample Output
12
2
0
 

题目链接:HDU 2639

用in[]记录取第i的物品的答案,用out[]记录不取的答案,然后从in与out中寻找第1~k个值,放入dp[v][k]中……由于in与out至少在k范围内均是单调不增的序列,那只要判断一下重复的即可,相当于01背包多了个过程记录

代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=110;
const int K=35;
int w[N],c[N];
int in[K],out[K];
int dp[N*10][K];
void init()
{
CLR(in,0);
CLR(out,0);
CLR(dp,0);
}
int main(void)
{
int n,v,k,i,j,q;
int tcase;
scanf("%d",&tcase);
while (tcase--)
{
scanf("%d%d%d",&n,&v,&k);
init();
for (i=0; i<n; ++i)
scanf("%d",&w[i]);
for (i=0; i<n; ++i)
scanf("%d",&c[i]);
for (i=0; i<n; ++i)
{
for (j=v; j>=c[i]; --j)
{
for (q=1; q<=k; ++q)
{
in[q]=dp[j-c[i]][q]+w[i];
out[q]=dp[j][q];
}
int a=1,b=1,c=1;
in[k+1]=out[k+1]=-INF;
while (c<=k&&(in[a]!=-INF||out[b]!=-INF))
{
if(in[a]>out[b])
dp[j][c]=in[a++];
else
dp[j][c]=out[b++];
if(dp[j][c]!=dp[j][c-1])
++c;
}
}
}
printf("%d\n",dp[v][k]);
}
return 0;
}

HDU 3639 Bone Collector II(01背包第K优解)的更多相关文章

  1. HDU - 2639 Bone Collector II (01背包第k大解)

    分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...

  2. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. hdu–2369 Bone Collector II(01背包变形题)

    题意:求解01背包价值的第K优解. 分析: 基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并. 首先看01背包求最优解的状态转移方程:\[dp\left[ j ...

  4. HDU2639Bone Collector II[01背包第k优值]

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. HDU 2639 Bone Collector II (01背包,第k解)

    题意: 数据是常规的01背包,但是求的不是最大容量限制下的最佳解,而是第k佳解. 思路: 有两种解法: 1)网上普遍用的O(V*K*N). 2)先用常规01背包的方法求出背包容量限制下能装的最大价值m ...

  6. HDU 2639 Bone Collector II(01背包变型)

    此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...

  7. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

  8. HDU 2639 (01背包第k优解)

    /* 01背包第k优解问题 f[i][j][k] 前i个物品体积为j的第k优解 对于每次的ij状态 记下之前的两种状态 i-1 j-w[i] (选i) i-1 j (不选i) 分别k个 然后归并排序并 ...

  9. (01背包 第k优解) Bone Collector II(hdu 2639)

    http://acm.hdu.edu.cn/showproblem.php?pid=2639       Problem Description The title of this problem i ...

随机推荐

  1. Cocos2d-JS的屏幕适配方案

    Cocos2d引擎为游戏开发者提供了屏幕适配策略(Resolution Policy)解决方案. 使用方式 1. 设置屏幕适配策略(Resolution Policy) 如果你还没有用过Resolut ...

  2. POJ1704 Georgia and Bob (阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %I64d & %I64u Subm ...

  3. ASP.NET SignalR 与LayIM配合,轻松实现网站客服聊天室(二) 实现聊天室连接

    上一篇已经简单介绍了layim WebUI即时通讯组件和获取数据的后台方法.现在要讨论的是SingalR的内容,之前都是直接贴代码.那么在贴代码之前先分析一下业务模型,顺便简单讲一下SingalR里的 ...

  4. Redis适用于高并发的递增、递减功能

    递增指令:incr(默认从0开始) 递减指令:decr(默认从0开始,递减会出现负数,这点跟memcache不一样,mc到0) 如下: 附上shardedJedisPool和JedisCluster的 ...

  5. 在qq中可以使用添加标签功能

    而在sina中不可以,现在就保持一致吧!那么每天使用的日志主要是记录工作项目上的问题还有生活的感受

  6. Nginx开启Gzip压缩大幅提高页面加载速度

    [root@12 conf]# vi nginx.conf gzip on;#开启GZIP gzip_min_length 1k; #不压缩临界值,大于1K的才压缩,一般不用改 gzip_buffer ...

  7. JUC回顾之-CyclicBarrier底层实现和原理

    1.CyclicBarrier 字面意思是可循环(Cyclic)使用的屏障(Barrier).它要做的事情是让一组线程到达一个屏障(同步点)时被阻塞,直到最后一个线程到达屏障时候,屏障才会开门.所有被 ...

  8. ***Linux文件夹文件创建、删除、改名

    Linux删除文件夹命令 linux删除目录很简单,很多人还是习惯用rmdir,不过一旦目录非空,就陷入深深的苦恼之中,现在使用rm -rf命令即可.直接rm就可以了,不过要加两个参数-rf 即:rm ...

  9. POJ 3461 Oulipo KMP

    题意:统计其中一个子串的出现次数 题解:即KMP算法中j==m的次数 //作者:1085422276 #include <cstdio> #include <cmath> #i ...

  10. 电赛菜鸟营培训(三)——STM32F103CB之串口通信

    一.串口通信概念 1.缩写 USART:Universal Synchronous/Asynchronous Receiver/Transmitter 通用同步/异步接收和发送器 2.用处 (1)同步 ...