Bone Collector II

Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4178    Accepted Submission(s): 2174

Problem Description
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

If the total number of different values is less than K,just ouput 0.

 
Input
The first line contain a integer T , the number of cases.
Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.

 
Output
One integer per line representing the K-th maximum of the total value (this number will be less than 231).

 
Sample Input
3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
 
Sample Output
12
2
0
 

题目链接:HDU 2639

用in[]记录取第i的物品的答案,用out[]记录不取的答案,然后从in与out中寻找第1~k个值,放入dp[v][k]中……由于in与out至少在k范围内均是单调不增的序列,那只要判断一下重复的即可,相当于01背包多了个过程记录

代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=110;
const int K=35;
int w[N],c[N];
int in[K],out[K];
int dp[N*10][K];
void init()
{
CLR(in,0);
CLR(out,0);
CLR(dp,0);
}
int main(void)
{
int n,v,k,i,j,q;
int tcase;
scanf("%d",&tcase);
while (tcase--)
{
scanf("%d%d%d",&n,&v,&k);
init();
for (i=0; i<n; ++i)
scanf("%d",&w[i]);
for (i=0; i<n; ++i)
scanf("%d",&c[i]);
for (i=0; i<n; ++i)
{
for (j=v; j>=c[i]; --j)
{
for (q=1; q<=k; ++q)
{
in[q]=dp[j-c[i]][q]+w[i];
out[q]=dp[j][q];
}
int a=1,b=1,c=1;
in[k+1]=out[k+1]=-INF;
while (c<=k&&(in[a]!=-INF||out[b]!=-INF))
{
if(in[a]>out[b])
dp[j][c]=in[a++];
else
dp[j][c]=out[b++];
if(dp[j][c]!=dp[j][c-1])
++c;
}
}
}
printf("%d\n",dp[v][k]);
}
return 0;
}

HDU 3639 Bone Collector II(01背包第K优解)的更多相关文章

  1. HDU - 2639 Bone Collector II (01背包第k大解)

    分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...

  2. HDU 2639 Bone Collector II(01背包变形【第K大最优解】)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. hdu–2369 Bone Collector II(01背包变形题)

    题意:求解01背包价值的第K优解. 分析: 基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并. 首先看01背包求最优解的状态转移方程:\[dp\left[ j ...

  4. HDU2639Bone Collector II[01背包第k优值]

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. HDU 2639 Bone Collector II (01背包,第k解)

    题意: 数据是常规的01背包,但是求的不是最大容量限制下的最佳解,而是第k佳解. 思路: 有两种解法: 1)网上普遍用的O(V*K*N). 2)先用常规01背包的方法求出背包容量限制下能装的最大价值m ...

  6. HDU 2639 Bone Collector II(01背包变型)

    此题就是在01背包问题的基础上求所能获得的第K大的价值. 详细做法是加一维去推当前背包容量第0到K个价值,而这些价值则是由dp[j-w[ i ] ][0到k]和dp[ j ][0到k]得到的,事实上就 ...

  7. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

  8. HDU 2639 (01背包第k优解)

    /* 01背包第k优解问题 f[i][j][k] 前i个物品体积为j的第k优解 对于每次的ij状态 记下之前的两种状态 i-1 j-w[i] (选i) i-1 j (不选i) 分别k个 然后归并排序并 ...

  9. (01背包 第k优解) Bone Collector II(hdu 2639)

    http://acm.hdu.edu.cn/showproblem.php?pid=2639       Problem Description The title of this problem i ...

随机推荐

  1. [Android Pro] Android Support 包里究竟有什么

    reference to : http://www.2cto.com/kf/201411/350928.html 随着 Android 5.0 Lollipop 的发布,Android 又为我们提供了 ...

  2. Hudson可扩展持续集成引擎

    参考文章:http://blog.csdn.net/dazhi_100/article/details/11629133 极限编程中一项建议实践便是持续集成,持续集成是指在开发阶段,对项目进行持续性自 ...

  3. jQuery 知识点积累

    1.判断checkbox是否选中   $("#aa").prop("checked")==true2.给属性赋值   $("#aa").pr ...

  4. hdu 4578 线段树 ****

    链接:点我  1

  5. HDU 4362 Dragon Ball 贪心DP

    Dragon Ball Problem Description   Sean has got a Treasure map which shows when and where the dragon ...

  6. HDU 4348 To the moon 可持久化线段树

    To the moon Problem Description BackgroundTo The Moon is a independent game released in November 201 ...

  7. [MySQL]导入导出

    [MySQL]导入导出 一 导入文本数据 1)mysql->load data infile 数据文件c:/mytable.txt 如下:(每一行为一条记录,记录的字段间用tab隔开,最后一个字 ...

  8. WebForms UnobtrusiveValidationMode 需要“jquery”ScriptResourceMapping

    我百度到的答案,原文请点击 错误信息: WebForms UnobtrusiveValidationMode 需要“jquery”ScriptResourceMapping.请添加一个名为 jquer ...

  9. 枚举 POJ 1753 Flip Game

    题目地址:http://poj.org/problem?id=1753 /* 这题几乎和POJ 2965一样,DFS函数都不用修改 只要修改一下change规则... 注意:是否初始已经ok了要先判断 ...

  10. Quartz.net misfire实践

      1.问题描述 在使用Quartz.net定时运行作业时,存在一种情况:作业错过了某次执行,当作业恢复的时候应该怎么处理?如:job1在3:50的时候应该执行的,但此刻job1处于暂停状态,而到3: ...