数论 HDOJ 5407 CRB and Candies
题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数。
分析:先上出题人的解题报告

好吧,数论一点都不懂,只明白f (n + 1)意思是前n+1个数的最小公倍数,求法解释参考HDOJ 1019,2028
这个结论暂时不知道怎么推出来的,那么就是剩下1/(n+1) 逆元的求法了
代码:
/************************************************
* Author :Running_Time
* Created Time :2015-8-21 14:52:39
* File Name :B.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e6 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
ll f[N];
int p[N]; bool ok(int n) {
int t = p[n];
while (n % t == 0 && n > 1) n /= t;
return n == 1;
} void seive(int n) {
for (int i=1; i<=n; ++i) p[i] = i;
for (int i=2; i<=n; ++i) {
if (p[i] == i) {
for (int j=2*i; j<=n; j+=i) p[j] = i;
}
}
} ll pow_mod(int a, int x, int p) {
ll ret = 1;
while (x) {
if (x & 1) ret = ret * a % p;
a = a * 1ll * a % p;
x >>= 1;
}
return ret;
} ll Inv(int a) {
return pow_mod (a, MOD - 2, MOD);
} void solve(void) {
seive (1000010);
f[0] = 1;
for (int i=1; i<=1000010; ++i) {
if (ok (i)) {
f[i] = f[i-1] * p[i] % MOD;
}
else f[i] = f[i-1];
}
} int main(void) {
solve ();
int T; scanf ("%d", &T);
while (T--) {
int n; scanf ("%d", &n);
printf ("%I64d\n", f[n+1] * Inv (n + 1) % MOD);
} return 0;
}
数论 HDOJ 5407 CRB and Candies的更多相关文章
- Hdu 5407 CRB and Candies (找规律)
题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...
- HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- HDU 5407 CRB and Candies
题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k)) 解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而 ...
- hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10
题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...
- 【HDOJ 5407】 CRB and Candies (大犇推导
pid=5407">[HDOJ 5407] CRB and Candies 赛后看这题题解仅仅有满眼的迷茫------ g(N) = LCM(C(N,0),C(N,1),...,C(N ...
- CRB and Candies LCM 性质
题目 CRB and Candies 题意 \[ \text{给定正整数N,求} LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),..., ...
随机推荐
- grep使用正则表达式搜索IP地址
递归搜索当前目录及其子目录.子目录的子目录……所包含文件是否包含IP地址 grep -r "[[:digit:]]\{1,3\}\.[[:digit:]]\{1,3\}\.[[:digit: ...
- 手机没Root?你照样可以渗透路由器
和Metasploit差不多,RouterSploit是一个强大的漏洞利用框架,用于快速识别和利用路由器中的普通漏洞,它还有个亮点,就是可以在绝大多数安卓设备上运行. 如果你想在电脑上运行,可以阅读这 ...
- Android拍照、摄像方向旋转的问题 代码具体解释
近期做了个拍照.摄像的应用.遇到了拍照.摄像的图像相对于现实.翻转了90度.原因:相机这个硬件的角度是横屏的角度,所以会出现都是横屏的. 1.照相.摄影预览图像的正确角度显 示: public sta ...
- 容器使用笔记(List篇)
上一篇博客介绍了Dictionary,这篇博客介绍List的相关内容. C#中要存储一组数据.我们会想到数组Array,ArrayList,List这三个对象,当中,数组是最早出现的,我们就从数组開始 ...
- REST技术第四步 多个參数注解问题
经过实验,发如今使用@BeanParam注解的查询类字段上. @FormParam和@QueryParam不能同一时候加上去,仅仅能加一个,否则会出现取不到数据的情况. 并且在方法參数上两个注解也不能 ...
- bzoj3109【CQOI2013】新数独
3109: [cqoi2013]新数独 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 365 Solved: 229 [Submit][Statu ...
- Java - split()函数和trim()函数的使用方法
split()函数和trim()函数的使用方法 本文地址: http://blog.csdn.net/caroline_wendy/article/details/24465141 详细參考Java ...
- 2016/4/5 Ajax ①用户名 密码 登陆 注册 ② 判断用户名是否已存在 ③点击按钮出现民族选项下拉菜单 ④DBDA类 加入Ajaxquery方法 数组变字符串 字符串拆分
①登陆 注册 查表匹配 0405Ajax.php ②判断用户名是否存在 <!DOCTYPE html> <html lang="en"> ...
- mongo12---手动预先分片
手动预先分片:(每个片上的数据是不一样的,是分开存,不是做备份) 自动分片有可能短期内某个片的数据过大,硬盘不够用了.能否100000-30000就到1号片. //以shop.user表为例,先声明s ...
- 单点登录原理及实现sso
WEB的登录那些事 说道账户登录和注册,其实我们每天都在亲身感受着,像微博.知乎还有简书等等.我们总是需要定期的去重新登录一下,对于这种认证机制,我们都能说出来两个名词,Cookie.Session. ...