数论 HDOJ 5407 CRB and Candies
题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数。
分析:先上出题人的解题报告

好吧,数论一点都不懂,只明白f (n + 1)意思是前n+1个数的最小公倍数,求法解释参考HDOJ 1019,2028
这个结论暂时不知道怎么推出来的,那么就是剩下1/(n+1) 逆元的求法了
代码:
/************************************************
* Author :Running_Time
* Created Time :2015-8-21 14:52:39
* File Name :B.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e6 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
ll f[N];
int p[N]; bool ok(int n) {
int t = p[n];
while (n % t == 0 && n > 1) n /= t;
return n == 1;
} void seive(int n) {
for (int i=1; i<=n; ++i) p[i] = i;
for (int i=2; i<=n; ++i) {
if (p[i] == i) {
for (int j=2*i; j<=n; j+=i) p[j] = i;
}
}
} ll pow_mod(int a, int x, int p) {
ll ret = 1;
while (x) {
if (x & 1) ret = ret * a % p;
a = a * 1ll * a % p;
x >>= 1;
}
return ret;
} ll Inv(int a) {
return pow_mod (a, MOD - 2, MOD);
} void solve(void) {
seive (1000010);
f[0] = 1;
for (int i=1; i<=1000010; ++i) {
if (ok (i)) {
f[i] = f[i-1] * p[i] % MOD;
}
else f[i] = f[i-1];
}
} int main(void) {
solve ();
int T; scanf ("%d", &T);
while (T--) {
int n; scanf ("%d", &n);
printf ("%I64d\n", f[n+1] * Inv (n + 1) % MOD);
} return 0;
}
数论 HDOJ 5407 CRB and Candies的更多相关文章
- Hdu 5407 CRB and Candies (找规律)
题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...
- HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies
CRB and Candies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- HDU 5407 CRB and Candies(LCM +最大素因子求逆元)
[题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- HDU 5407 CRB and Candies
题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k)) 解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而 ...
- hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10
题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...
- 【HDOJ 5407】 CRB and Candies (大犇推导
pid=5407">[HDOJ 5407] CRB and Candies 赛后看这题题解仅仅有满眼的迷茫------ g(N) = LCM(C(N,0),C(N,1),...,C(N ...
- CRB and Candies LCM 性质
题目 CRB and Candies 题意 \[ \text{给定正整数N,求} LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),..., ...
随机推荐
- 如何用grep命令同时显示“匹配行”上下的n行?
如何用grep命令同时显示匹配行上下的n行 标准unix/linux下的grep通过以下参数控制上下文 grep -C 5 foo file 显示file文件中匹配foo字串那行以及上下5行gre ...
- [Hibernate Search] (3) 基础查询
基础查询 眼下我们仅仅用到了基于keyword的查询,实际上Hibenrate Search DSL还提供了其他的查询方式,以下我们就来一探到底. 映射API和查询API 对于映射API.我们能够通过 ...
- wpf 导出Excel Wpf Button 样式 wpf简单进度条 List泛型集合对象排序 C#集合
wpf 导出Excel 1 private void Button_Click_1(object sender, RoutedEventArgs e) 2 { 3 4 ExportDataGrid ...
- python各进制、字节串间的转换
>>> i = 13 >>> bin(i) '0b1101' >>> oct(i) '0o15' >>> hex(i) '0xd ...
- MVC架构在游戏开发中的应用
一 定义 MVC即Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写. MVC是一种"前端"的设计模式. MV ...
- 2016/04/29 ①cms分类 ② dede仿站制作 步骤 十个步骤 循环生成菜单 带子菜单的菜单 标签 栏目 栏目内容列表 内容图片列表
cms 系统还有: phpcms 企业站 Xiaocms 织梦 企业站 wordpress (博客) Ecshop 商城 Ecmall 多用户 Discms 记账 方维 订餐 团购 CMS ...
- 【bzoj1965】[Ahoi2005]SHUFFLE 洗牌
x*2^m==l (mod n+1)x=(n/2+1)^m*l mod n+1 #include<algorithm> #include<iostream> #include& ...
- c中的变量
1 变量类型 1.1 static global or static .data/.bss 1.2 automic stack,its relevant to os kernel and compil ...
- 每天进步一点点—mysql-mysqldump
一. 简单介绍 mysqldump是client用来备份数据库或者在不通数据库之间进行数据迁移的工具,备份内容包括创建表或者装载表的SQL语句 二. 命令格式 备份单个数 ...
- caioj1272&&codeforces 148D: 概率期望值3:抓老鼠
这道真的是好题,不卡精度,不卡细节,但是思考的方式很巧妙! 一开始大家跟我想的应该差不多,用f[i][j]表示有i只白老鼠,j只黑老鼠的胜率,然后跑DP,然后我就发现,这样怎么做?还有一种不胜不负的平 ...