题意

给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交

输出方案

Sol

定理:路径覆盖 = 定点数 - 二分图最大匹配数

直接上匈牙利

输出方案的话就不断的从一个点跳匹配边

#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int MAXN = 1e5 + , INF = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, M;
vector<int> v[MAXN];
int link[MAXN], vis[MAXN], cnt = ;
bool Arg(int x) {
for(int i = ; i < v[x].size(); i++) {
int to = v[x][i];
if(vis[to] == cnt) continue; vis[to] = cnt;
if(!link[to] || Arg(link[to]))
{link[to] = x; link[x] = to; return ;}
}
return ;
}
int Hunary() {
int ans = ;
for(int i = ; i <= N; i++, cnt++)
if(Arg(i))
ans++;
return ans;
}
int main() {
N = read(); M = read();
for(int i = ; i <= M; i++) {
int x = read(), y = read();
v[x].push_back(y + N);
}
int ans = N - Hunary();
memset(vis, , sizeof(vis));
for(int i = ; i <= N; i++) {
int x = i + N;
if(vis[i]) continue;
do
printf("%d ", x = x - N);
while(vis[x] = , x = link[x]);
puts("");
}
printf("%d", ans);
return ;
}

洛谷P2764 最小路径覆盖问题(二分图)的更多相关文章

  1. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  2. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

  3. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  4. 洛谷P2764 最小路径覆盖问题(最大流)

    传送门 先说做法:把原图拆成一个二分图,每一个点被拆成$A_i,B_i$,若原图中存在边$(u,v)$,则连边$(A_u,B_v)$,然后$S$对所有$A$连边,所有$B$对$T$连边,然后跑一个最大 ...

  5. 洛谷 P2764 最小路径覆盖问题【匈牙利算法】

    经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...

  6. 【刷题】洛谷 P2764 最小路径覆盖问题

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

  7. 洛谷 P2764(最小路径覆盖=节点数-最大匹配)

    给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别 ...

  8. 洛谷 [P2764]最小路径覆盖问题

    二分图应用模版 #include <iostream> #include <cstdio> #include <algorithm> #include <cs ...

  9. 洛谷-p2764(最小路径覆盖)(网络流24题)

    #include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...

随机推荐

  1. ADB结构及代码分析【转】

    本文转载自:http://blog.csdn.net/happylifer/article/details/7682563 最近因为需要,看了下adb的源代码,感觉这个作者很牛,设计的很好,于是稍微做 ...

  2. Git 对比两分支中同一文件

    语法 git diff <分支名> <分支名> -- 文件名 git diff branch1 branch2 -- path/file.txt 案例 git diff ori ...

  3. WebSocket使用教程 - 带完整实例--网址:https://my.oschina.net/u/1266171/blog/357488

    什么是WebSocket?看过html5的同学都知道,WebSocket protocol 是HTML5一种新的协议.它是实现了浏览器与服务器全双工通信(full-duplex).HTML5定义了We ...

  4. 微服务框架go-micro

    微服务框架go-micro https://www.cnblogs.com/li-peng/p/9558421.html 产品嘴里的一个小项目,从立项到开发上线,随着时间和需求的不断激增,会越来越复杂 ...

  5. 特殊的shell变量:

    特殊的shell变量: $0 获取当前执行的shell脚本的文件名 $n 获取当前执行的shell脚本的第n个参数值,n=1..9 $* 获取当前shell的所有参数 “$1 $2 $3 …注意与$# ...

  6. 【旧文章搬运】PE感染逆向之修复(Serverx.exe专杀工具出炉手记)

    原文发表于百度空间,2008-10-4看雪论坛发表地址:https://bbs.pediy.com/thread-73948.htm================================== ...

  7. CreateThread创建线程 互斥量锁

    HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes,//SD:线程安全相关的属性,常置为NULL SIZE_T dwStackS ...

  8. Git分布式版本控制工具

    一.安装Git  1.下载Windows版的Git:msysgit:官方下载地址:http://msysgit.github.io,安装选定要安装的目录(路径杜绝中文),剩下的按照默认安装即可,参考: ...

  9. python学习笔记1-基础语法

    1 在3版本中print需要加上括号2 多行语句:用\连接 item_one=1 item_two=2 item_three=3 total = item_one + \ item_two + \ i ...

  10. bzoj 2084: [Poi2010]Antisymmetry【回文自动机】

    manacher魔改,hash+二分都好写,但是我魔改了个回文自动机就写自闭了orz 根本上来说只要把==改成!=即可,但是这样一来很多停止条件就没了,需要很多特判手动刹车,最后统计一下size即可 ...