Problem description.

The Fibonacci numbers defined as f(n) = f(n-1) + f(n-2) where f0 = 0 and f1 = 1.

We define a function as follows D(n,x) = x + x^2 + 2x^3 + 3x^4 + 5x^5 + 8x^6 +...+f(n)x^n

Given two integers n and x, you need to compute D(n,x) since the output can be very large output the result modulo 1000000007 (1e9+7) .

Input

Input description.

  • The first line of the input contains an integer T denoting the number of test cases. 
    The description of T test cases follows.
  • The first line of each test case contains two integers n and x as described above.

Output

Output description.

  • For each test case, output D(n,x)%1000000007 in a seperate line.

Constraints

Should contain all the constraints on the input data that you may have. Format it like:

  • 1 ≤ T ≤ 1000
  • 0 ≤ n ≤ 10^15
  • 0 ≤ x ≤ 10^15

Example

Input:
1
7 11 Output:
268357683

题意:f(n)是斐波拉契数列,g(n)=f(n)*x^n;求前N项的g(n)的累加和。

思路:易得g(n)=g(n-1)*x+g(n-2)*x^2,

可以得到g(n)的矩阵求解方程: g(n)=base^N*g(0);  其中,base[1][1]=X; base[1][2]=X^2; base[2][1]=1(由递推式得到);

前缀和可以由大矩阵得到:A[1][1]=base; A[1][2]=1; A[2][2]=1(有前缀和求和公式得到) ;

大概地解释了一下,不是很清楚,可以看代码。前缀和可以参考这里:http://www.cnblogs.com/hua-dong/p/8479103.html

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const int Mod=1e9+;struct mat
{
ll mp[][];
mat(){memset(mp,,sizeof(mp)); }
mat friend operator *(mat a,mat b)
{
mat res;
for(int k=;k<=;k++)
for(int i=;i<=;i++)
for(int j=;j<=;j++)
res.mp[i][j]=(res.mp[i][j]+(a.mp[i][k]*b.mp[k][j])%Mod)%Mod;
return res;
}
mat friend operator ^(mat a,ll x)
{
mat res;
for(int i=;i<=;i++) res.mp[i][i]=;
while(x){
if(x&) res=res*a; a=a*a; x>>=;
} return res;
}
};
int main()
{
ll T,N,X;
scanf("%lld",&T);
while(T--){
scanf("%lld%lld",&N,&X); X%=Mod;
mat base;
base.mp[][]=X; base.mp[][]=X*X%Mod; base.mp[][]=;
for(int i=;i<=;i++) base.mp[i][i+]=base.mp[i+][i+]=;
base=base^N;
printf("%lld\n",base.mp[][]*X%Mod);
}
return ;
}

SPOJ:Fibonacci Polynomial(矩阵递推&前缀和)的更多相关文章

  1. HDU 1757 A Simple Math Problem 【矩阵经典7 构造矩阵递推式】

    任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1757 A Simple Math Problem Time Limit: 3000/1000 MS (J ...

  2. POJ 3734 Blocks(矩阵快速幂+矩阵递推式)

    题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 .   设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...

  3. Codeforces1065G Fibonacci Suffix 【递推】【二分答案】

    题目分析: 首先为了简便起见我们把前$15$的答案找出来,免得我们还要特判$200$以内之类的麻烦事. 然后我们从$16$开始递推.考虑猜测第i位是$0$还是$1$(这本质上是个二分).一开始先猜是$ ...

  4. POJ 3734 Blocks 矩阵递推

    POJ3734 比较简单的递推题目,只需要记录当前两种颜色均为偶数, 只有一种颜色为偶数 两种颜色都为奇数 三个数量即可,递推方程相信大家可以导出. 最后来个快速幂加速即可. #include< ...

  5. Number String(HDU 4055,动态规划递推,前缀和优化)

    点击加号查看代码 #include<bits/stdc++.h>//前缀和优化版本,不易理解 using namespace std; #define ll long long ; ; l ...

  6. CJOJ 1331 【HNOI2011】数学作业 / Luogu 3216 【HNOI2011】数学作业 / HYSBZ 2326 数学作业(递推,矩阵)

    CJOJ 1331 [HNOI2011]数学作业 / Luogu 3216 [HNOI2011]数学作业 / HYSBZ 2326 数学作业(递推,矩阵) Description 小 C 数学成绩优异 ...

  7. Luogu 1962 斐波那契数列(矩阵,递推)

    Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n ...

  8. hdu3306 Another kind of Fibonacci【矩阵快速幂】

    转载请注明出处:http://www.cnblogs.com/KirisameMarisa/p/4187670.html 题目链接:http://acm.hdu.edu.cn/showproblem. ...

  9. 51nod1149 Pi的递推式

    基准时间限制:1 秒 空间限制:131072 KB 分值: 640 F(x) = 1 (0 <= x < 4) F(x) = F(x - 1) + F(x - pi) (4 <= x ...

随机推荐

  1. 75. Spring Boot 定制URL匹配规则【从零开始学Spring Boot】

    在之前有一篇文章说了,博客名称从原来的<从零开始学Spring Boot>更改为<Spring Boot常见异常汇总>,后来写了几篇文章之后发展,有些文章还是一些知识点,所以后 ...

  2. 【ITOO 4】WCF中,分布式事务处理

    导读:事务可以确保除非事务性单元内的所有操作都成功完成,否则不会永久更新面向数据的资源.通过将一组相关操作组合为一个要么全部成功要么全部失败的单元,可以简化错误恢复并使应用程序更加可靠.在项目中,就有 ...

  3. 【RMAN】RMAN跨版本恢复(下)--大版本异机恢复

    [RMAN]RMAN跨版本恢复(下)--大版本异机恢复 BLOG文档结构图 ORACLE_SID=ORA1024G 关于10g的跨小版本恢复参考:http://blog.chinaunix.net/u ...

  4. 【BZOJ2560】串珠子(状压DP,容斥原理)

    题意: 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体.现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不用绳子连接,或者在 ...

  5. msp430项目编程30

    msp430中项目---电压检测系统 1.SVS工作原理 2.电路工作原理 3.代码(显示部分) 4.代码(功能实现) 5.项目总结

  6. Jquery操作事件

    1.文档加载事件 2.DOM单击双击事件 3.DOM获得焦点,失去焦点问题 4.DOM鼠标移入,移出事件 <!DOCTYPE html> <html> <head> ...

  7. SpringDataJPA入门2

    SpringDataJPA实体概述 JPA提供了一种简单高效的方式来管理Java对象(POJO)到关系型数据库的映射,此类Java对象成为JPA实体或简称实体.实体通常与底层数据库中的单个关系表相关联 ...

  8. Spring中基于AOP的XML架构

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/aop-with-spring-framenwork/xml-schema-based-aop-wi ...

  9. Using DTrace to Profile and Debug A C++ Program

    http://www.oracle.com/technetwork/server-storage/solaris/dtrace-cc-138561.html

  10. mysql查询今天,昨天,近7天,近30天,本月,上一月数据的SQL

    原文:http://www.open-open.com/code/view/1423207309170 select * from ad_proTrack_t where to_days(crt_ti ...