Python机器学习——Agglomerative层次聚类
层次聚类(hierarchical clustering)可在不同层次上对数据集进行划分,形成树状的聚类结构。AggregativeClustering是一种常用的层次聚类算法。
其原理是:最初将每个对象看成一个簇,然后将这些簇根据某种规则被一步步合并,就这样不断合并直到达到预设的簇类个数。这里的关键在于:如何计算聚类簇之间的距离?
由于每个簇就是一个集合,因此需要给出集合之间的距离。给定聚类簇Ci,CjCi,Cj,有如下三种距离:
- 最小距离:
dmin(Ci,Cj)=minx⃗ i∈Ci,x⃗ j∈Cjdistance(x⃗ i,x⃗ j)dmin(Ci,Cj)=minx→i∈Ci,x→j∈Cjdistance(x→i,x→j)
它是两个簇的样本对之间距离的最小值。
- 最大距离:
dmax(Ci,Cj)=maxx⃗ i∈Ci,x⃗ j∈Cjdistance(x⃗ i,x⃗ j)dmax(Ci,Cj)=maxx→i∈Ci,x→j∈Cjdistance(x→i,x→j)
它是两个簇的样本对之间距离的最大值。
- 平均距离:
davg(Ci,Cj)=1|Ci||Cj|∑x⃗ i∈Ci∑x⃗ j∈Cjdistance(x⃗ i,x⃗ j)davg(Ci,Cj)=1|Ci||Cj|∑x→i∈Ci∑x→j∈Cjdistance(x→i,x→j)
它是两个簇的样本对之间距离的平均值。
当该算法的聚类簇采用dmindmin时,称为单链接single-linkage算法,当该算法的聚类簇采用dmaxdmax时,称为单链接complete-linkage算法,当该算法的聚类簇采用davgdavg时,称为单链接average-linkage算法。
下面给出算法:
- 输入:
- 数据集D=D={x⃗ 1,x⃗ 2,...,x⃗ Nx→1,x→2,...,x→N}
- 聚类簇距离度量函数
- 聚类簇数量KK
- 输出:簇划分C=C={C1,C2,...,CKC1,C2,...,CK}
算法步骤如下:
- 初始化:将每个样本都作为一个簇
Ci=[x⃗ i],i=1,2,...,NCi=[x→i],i=1,2,...,N
- 迭代:终止条件为聚类簇的数量为K。迭代过程如下:
- 计算聚类簇之间的距离,找出距离最近的两个簇,将这两个簇合并。
- 计算聚类簇之间的距离,找出距离最近的两个簇,将这两个簇合并。
Python实战
AgglomerativeClustering是scikit-learn提供的层级聚类算法模型,其原型为:
- 初始化:将每个样本都作为一个簇
class sklearn.cluster.AgglomerativeClustering(n_clusters=2, affinity=’euclidean’, memory=None, connectivity=None, compute_full_tree=’auto’, linkage=’ward’, pooling_func=<function mean>)
- 1
参数
- n_clusters:一个整数,指定分类簇的数量
- connectivity:一个数组或者可调用对象或者None,用于指定连接矩阵
- affinity:一个字符串或者可调用对象,用于计算距离。可以为:’euclidean’,’l1’,’l2’,’mantattan’,’cosine’,’precomputed’,如果linkage=’ward’,则affinity必须为’euclidean’
- memory:用于缓存输出的结果,默认为不缓存
- n_components:在 v-0.18中移除
- compute_full_tree:通常当训练了n_clusters后,训练过程就会停止,但是如果compute_full_tree=True,则会继续训练从而生成一颗完整的树
- linkage:一个字符串,用于指定链接算法
- ‘ward’:单链接single-linkage,采用dmindmin
- ‘complete’:全链接complete-linkage算法,采用dmaxdmax
- ‘average’:均连接average-linkage算法,采用davgdavg
- pooling_func:一个可调用对象,它的输入是一组特征的值,输出是一个数
属性
- labels:每个样本的簇标记
- n_leaves_:分层树的叶节点数量
- n_components:连接图中连通分量的估计值
- children:一个数组,给出了每个非节点数量
方法
- fit(X[,y]):训练样本
- fit_predict(X[,y]):训练模型并预测每个样本的簇标记
from sklearn import cluster
from sklearn.metrics import adjusted_rand_score
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
"""
产生数据
"""
def create_data(centers,num=100,std=0.7):
X,labels_true = make_blobs(n_samples=num,centers=centers, cluster_std=std)
return X,labels_true
"""
数据作图
"""
def plot_data(*data):
X,labels_true=data
labels=np.unique(labels_true)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
colors='rgbycm'
for i,label in enumerate(labels):
position=labels_true==label
ax.scatter(X[position,0],X[position,1],label="cluster %d"%label),
color=colors[i%len(colors)]
ax.legend(loc="best",framealpha=0.5)
ax.set_xlabel("X[0]")
ax.set_ylabel("Y[1]")
ax.set_title("data")
plt.show()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
这里写代码片
"""
测试函数
"""
def test_AgglomerativeClustering(*data):
X,labels_true=data
clst=cluster.AgglomerativeClustering()
predicted_labels=clst.fit_predict(X)
print("ARI:%s"% adjusted_rand_score(labels_true, predicted_labels))
"""
考察簇的数量对于聚类效果的影响
"""
def test_AgglomerativeClustering_nclusters(*data):
X,labels_true=data
nums=range(1,50)
ARIS=[]
for num in nums:
clst=cluster.AgglomerativeClustering(n_clusters=num)
predicted_lables=clst.fit_predict(X)
ARIS.append(adjusted_rand_score(labels_true, predicted_lables))
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.plot(nums,ARIS,marker="+")
ax.set_xlabel("n_clusters")
ax.set_ylabel("ARI")
fig.suptitle("AgglomerativeClustering")
plt.show()
"""
考察链接方式对聚类结果的影响
"""
def test_agglomerativeClustering_linkage(*data):
X,labels_true=data
nums=range(1,50)
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
linkages=['ward','complete','average']
markers="+o*"
for i,linkage in enumerate(linkages):
ARIs=[]
for num in nums:
clst=cluster.AgglomerativeClustering(n_clusters=num,linkage=linkage)
predicted_labels=clst.fit_predict(X)
ARIs.append(adjusted_rand_score(labels_true, predicted_labels))
ax.plot(nums,ARIs,marker=markers[i],label="linkage:%s"%linkage)
ax.set_xlabel("n_clusters")
ax.set_ylabel("ARI")
ax.legend(loc="best")
fig.suptitle("AgglomerativeClustering")
plt.show()
centers=[[1,1],[2,2],[1,2],[10,20]]
X,labels_true=create_data(centers, 1000, 0.5)
test_AgglomerativeClustering(X,labels_true)
plot_data(X,labels_true)
test_AgglomerativeClustering_nclusters(X,labels_true)
test_agglomerativeClustering_linkage(X,labels_true)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
可以看到当n_clusters=4时,ARI指数最大,因为确实是从四个中心点产生的四个簇。
- 1
- 2
可以看到,三种链接方式随分类簇的数量的总体趋势相差无几。但是单链接方式ward的峰值最大
Python机器学习——Agglomerative层次聚类的更多相关文章
- 【Python机器学习实战】聚类算法(2)——层次聚类(HAC)和DBSCAN
层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 ...
- python实现一个层次聚类方法
层次聚类(Hierarchical Clustering) 一.概念 层次聚类不需要指定聚类的数目,首先它是将数据中的每个实例看作一个类,然后将最相似的两个类合并,该过程迭代计算只到剩下一个类为止,类 ...
- 【Python机器学习实战】聚类算法(1)——K-Means聚类
实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法. K-means聚类算法 0.聚类算法算法简介 聚类算法算 ...
- 机器学习(6): 层次聚类 hierarchical clustering
假设有N个待聚类的样本,对于层次聚类来说,步骤: 1.(初始化)把每个样本归为一类,计算每两个类之间的距离,也就是样本与样本之间的相似度: 2.寻找各个类之间最近的两个类, ...
- 吴裕雄 python 机器学习——K均值聚类KMeans模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 吴裕雄 python 机器学习——混合高斯聚类GMM模型
import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.metrics ...
- Python机器学习算法 — K-Means聚类
K-Means简介 步,直到每个簇的中心基本不再变化: 6)将结果输出. K-Means的说明 如图所示,数据样本用圆点表示,每个簇的中心点用叉叉表示: (a)刚开始时是原始数据,杂乱无章 ...
- 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善 ...
随机推荐
- js bind es5函数柯里化
绑定函数 bind()最简单的用法是创建一个函数,使这个函数不论怎么调用都有同样的this值.常见的错误就像上面的例子一样,将方法从对象中拿出来,然后调用,并且希望this指向原来的对象. 如果不做特 ...
- DoDataExchange的作用
void CDlgSelectCS::DoDataExchange(CDataExchange* pDX) { CDialog::DoDataExchange(pDX); DDX_Te ...
- 设计模式之观察者模式(Observer pattern)
最近参加了一次面试,其中笔试题有一道编程题,在更换掉试题的描述场景后,大意如下: 上课铃声响起,学生A/B/C/D进入教室:下课铃声响起,学生A/B/C/D离开教室. 要求使用设计模式的思想完成铃与学 ...
- myeclipse 导入maven
一安装maven 先安装jdk,配置JAVA_HOME 把下载的maven bin包,解压到指定目录,比如:D:\apache-maven-3.3.9-bin 配置maven的系统变量M2_HOME和 ...
- 比Android更深远的改变世界——谷歌开源人工智能系统TensorFlow文档中文版
OpenStack中国社区编者按:开源无处不在,特别在基础创新领域,未来系统软件都会是开源为主流:2015年11月9日,Google于开源了其第二代人工智能系统Tensorflow,如同6年前同样开源 ...
- UVa 12714 Two Points Revisited (水题,计算几何)
题意:给定一条线段,让你求一条线段与已知线段垂直,并且所有线段的坐标的点的坐标都不大于给定的坐标的最大值且不能为负数. 析:没啥好说的,随便找一条就好. 代码如下: #pragma comment(l ...
- Hardcoded string "下一步", should use @string resource警告 (转载)
转自:http://blog.csdn.net/iqv520/article/details/7579513 在布局文件中,文本的设置使用如下写法时会有警告:Hardcoded string &quo ...
- bzoj 1607: [Usaco2008 Dec]Patting Heads 轻拍牛头【瞎搞】
某种意义上真毒瘤?我没看懂题啊...于是看了题解 就是筛约数的那种方法,复杂度调和级数保证O(nlogn) 所以这题啥意思啊 #include<iostream> #include< ...
- 线程间的参数传递 分类: linux c/c++ 2014-06-15 17:48 607人阅读 评论(0) 收藏
在多线程编程中,常常需要从主线程传递参数给子线程或在主线程中获得子线程的计算结果, 若使用全局变量实现,必然需要对临界区保护,因此导致大量的切换工作造成效率的低下: 而利用进程间的参数传递可以解决这一 ...
- android将对象序列化到文件:直接写文件与用Serializable接口的对比
1.用文件读写1024个对象的日志 10-09 16:12:44.493 6385-6385/com.example.tt.downtest D/Serializable_TAG: write 102 ...