Codeforces #2B The least round way(DP)
Description
有一个n*n的正整数矩阵,要你求一条从第一行第一列的格子到第n行第n列的路,使得你走过的格子里面的数乘起来的值末尾的零的个数最小。输出最小个数。
Input
第一行包括1个数n。
接下来n行每行n个数字。
Output
一个数字表示末尾零最小个数。
Sample Input
3
1 2 3
4 5 6
7 8 9
Sample Output
0
因为都是正数,对这个来说仅仅需统计最少的2或5就可以。相对简单。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<bitset>
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
typedef long long LL;
typedef pair<int,int>pil;
const int INF=0x3f3f3f3f;
const int maxn=1010;
int dp[maxn][maxn][2];
int path[maxn][maxn][2];
int mp[maxn][maxn][2];
int n;
void print(int i,int j)
{
if(i==1&&j==1)
return ;
print(path[i][j][0],path[i][j][1]);
if(i-path[i][j][0]==1&&j==path[i][j][1]) printf("%c",'D');
else printf("%c",'R');
}
int main()
{
int x,cnt1,cnt2,temp;
while(~scanf("%d",&n))
{
REPF(i,1,n)
{
REPF(j,1,n)
{
scanf("%d",&x);
cnt1=cnt2=0;temp=x;
while(temp%2==0)
{
temp/=2;
cnt1++;
}
while(x%5==0)
{
x/=5;
cnt2++;
}
mp[i][j][0]=cnt1;
mp[i][j][1]=cnt2;
}
}
CLEAR(dp,INF);
dp[1][1][0]=mp[1][1][0];
dp[1][1][1]=mp[1][1][1];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=0;k<2;k++)//0:2 1:5
{
if(i>1&&dp[i][j][k]>dp[i-1][j][k]+mp[i][j][k])
{
dp[i][j][k]=dp[i-1][j][k]+mp[i][j][k];
path[i][j][0]=i-1;path[i][j][1]=j;
}
if(j>1&&dp[i][j][k]>dp[i][j-1][k]+mp[i][j][k])
{
dp[i][j][k]=dp[i][j-1][k]+mp[i][j][k];
path[i][j][0]=i;path[i][j][1]=j-1;
}
}
}
}
printf("%d\n",min(dp[n][n][0],dp[n][n][1]));
// print(n,n);
// puts("");
}
return 0;
}
/*
再看Codeforces 2B:
Description
There is a square matrix n × n, consisting of non-negative integer numbers. You should find such a way on it that
- starts in the upper left cell of the matrix;
- each following cell is to the right or down from the current cell;
- the way ends in the bottom right cell.
Moreover, if we multiply together all the numbers along the way, the result should be the least "round". In other words, it should end in the least possible number of zeros.
Input
The first line contains an integer number n (2 ≤ n ≤ 1000), n is
the size of the matrix. Then follow n lines containing the matrix elements (non-negative integer numbers not exceeding109).
Output
In the first line print the least number of trailing zeros. In the second line print the correspondent way itself.
Sample Input
3
1 2 3
4 5 6
7 8 9
0
DDRR
Source
不仅要输出路径。并且矩阵中还带了0,这就是麻烦的地方。
题解:对于要输出的路径。记录前面的一个状态就可以。对于0的处理,假设到终点的2或
5的个数大于等于1了,而矩阵中含0。这时候就是直接答案就是1个0。路径仅仅需找到随意
一个0所在的行列输出就可以。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<bitset>
using namespace std;
#define REPF( i , a , b ) for ( int i = a ; i <= b ; ++ i )
#define REP( i , n ) for ( int i = 0 ; i < n ; ++ i )
#define CLEAR( a , x ) memset ( a , x , sizeof a )
typedef long long LL;
typedef pair<int,int>pil;
const int INF=0x3f3f3f3f;
const int maxn=1010;
int dp[maxn][maxn][2];
int path1[maxn][maxn][2];
int path2[maxn][maxn][2];
int mp[maxn][maxn][2];
int n;
void print1(int i,int j)
{
if(i==1&&j==1)
return ;
print1(path1[i][j][0],path1[i][j][1]);
if(i-path1[i][j][0]==1&&j==path1[i][j][1]) printf("%c",'D');
else printf("%c",'R');
}
void print2(int i,int j)
{
if(i==1&&j==1)
return ;
print2(path2[i][j][0],path2[i][j][1]);
if(i-path2[i][j][0]==1&&j==path2[i][j][1]) printf("%c",'D');
else printf("%c",'R');
}
int main()
{
int x,cnt1,cnt2,temp,ans;
int sx,sy;
while(~scanf("%d",&n))
{
int flag=1;
CLEAR(mp,0);
REPF(i,1,n)
{
REPF(j,1,n)
{
scanf("%d",&x);
cnt1=cnt2=0;temp=x;
if(x==0)
{
mp[i][j][0]=mp[i][j][1]=1;
sx=i;sy=j;flag=0;continue;
}
while(temp%2==0)
{
temp/=2;
cnt1++;
}
while(x%5==0)
{
x/=5;
cnt2++;
}
mp[i][j][0]=cnt1;
mp[i][j][1]=cnt2;
}
}
CLEAR(dp,INF);
dp[1][1][0]=mp[1][1][0];
dp[1][1][1]=mp[1][1][1];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
for(int k=0;k<2;k++)//0:2 1:5
{
if(i>1&&dp[i][j][k]>dp[i-1][j][k]+mp[i][j][k])
{
dp[i][j][k]=dp[i-1][j][k]+mp[i][j][k];
if(!k)
{
path1[i][j][0]=i-1;
path1[i][j][1]=j;
}
else
{
path2[i][j][0]=i-1;
path2[i][j][1]=j;
}
}
if(j>1&&dp[i][j][k]>dp[i][j-1][k]+mp[i][j][k])
{
dp[i][j][k]=dp[i][j-1][k]+mp[i][j][k];
if(!k)
{
path1[i][j][0]=i;
path1[i][j][1]=j-1;
}
else
{
path2[i][j][0]=i;
path2[i][j][1]=j-1;
}
}
}
}
}
ans=min(dp[n][n][0],dp[n][n][1]);
if(ans>=1&&!flag)
{
printf("%d\n",1);
for(int i=0;i<sx-1;i++)
printf("%c",'D');
for(int i=0;i<sy-1;i++)
printf("%c",'R');
for(int i=sx;i<n;i++)
printf("%c",'D');
for(int i=sy;i<n;i++)
printf("%c",'R');
puts("");
continue;
}
printf("%d\n",ans);
if(ans==dp[n][n][0]) print1(n,n);
else print2(n,n);
puts("");
}
return 0;
}
/*
3
2 2 2
2 2 2
5 5 5
*/
Codeforces #2B The least round way(DP)的更多相关文章
- codeforces 2B The least round way(DP+数学)
The least round way 题目链接:http://codeforces.com/contest/2/problem/B ——每天在线,欢迎留言谈论.PS.本题有什么想法.建议.疑问 欢迎 ...
- Codeforces 2B The least round way(dp求最小末尾0)
题目链接:http://codeforces.com/problemset/problem/2/B 题目大意: 给你一个nxn的矩形,找到一条从左上角到右下角的路径,使得该路径上所有数字的乘积的末尾0 ...
- codeforces 2B The least round way 【DP】
VJ上可找到中文题意. 思路: 首先分解有多少2与多少5.接下来就是dp. 分两次,一次是根据2的数量贪心,另外一次是根据5的数量贪心,看哪一次乘积的末尾0最少. 需要注意的是两点: 1.输入有0的情 ...
- Codeforces 2B. The least round way
There is a square matrix n × n, consisting of non-negative integer numbers. You should find such a w ...
- 最小较小codeforces 2B The least round way
查了好多资料,发现还是不全,干脆自己整理吧,至少保证在我的做法正确的,以免误导读者,也是给自己做个记载吧! 求从左上角到右下角所经过的数字之积末端所含0最小的个数 终究的积可以当作A*2^x*5^y, ...
- CF 2B The least round way DP+Math
题意: 找出一条路, 使每个节点相乘,得到的数末尾 0 最少 每次移动只能向右或者向下, 找到后打印路径 ///按照题目要求,就是找出一条从左上角到右下角中每个数含2 or 5 最少的路 ///可以用 ...
- [CodeForces - 1225E]Rock Is Push 【dp】【前缀和】
[CodeForces - 1225E]Rock Is Push [dp][前缀和] 标签:题解 codeforces题解 dp 前缀和 题目描述 Time limit 2000 ms Memory ...
- [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)
[Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...
- [Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT)
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i ...
随机推荐
- jq封装插件
$.extend()拓展方法: $(function(){ $.extend({ money:function(){ alert("我要努力赚钱") }, money:functi ...
- 通过acdbblockreference 获得块名
AcDbBlockReference *pBlkRef = AcDbBlockReference::cast(ent.object()); AcDbObjectId pBlkTblRecId; ...
- CAD与用户互在图面上得到一个矩形框(com接口VB语言)
主要用到函数说明: MxDrawXCustomFunction::ExApp_CutDwg 与用户互在图面上得到一个矩形框,详细说明如下: 参数 说明 IN DOUBLE dX1 保存范围的左下角位置 ...
- svn无法显示日期和作者
当遇到这种情况,只要把这个read改为none就可以显示了 亲测绝对管用
- css--小白入门篇1
一.引入 css用来描述html,学习css前我们先来学习html的基础标签的用法,再进入css的学习. 本教程面向小白对象,不会讲细枝末节深入的东西. 二.列表 列表有3种 2.1 无序列表 无序列 ...
- Python学习第二阶段,Day2,import导入模块方法和内部原理
怎样导入模块和导入包?? 1.模块定义:代码越来越多的时候,所有代码放在一个py文件无法维护.而将代码拆分成多个py文件,同一个名字的变量互不影响,模块本质上是一个.py文件或者".py&q ...
- 入门系列(一) 微信小程序简介
一.简介 1.目录结构 首先,我们使用微信公众平台提供的开发者工具,创建一个简单的小程序项目,观察项目的目录结构 不难看出,一个典型的微信小程序,通常包含一个描述整体的主体部分,以及一个描述页面的 p ...
- iframe使用大全
<iframe src=”you page’s url” width=”100″ height=”30″ frameborder=”no” border=”0″ marginwidth=”0″ ...
- Python字符串(Python学习笔记02)
字符串 Python 3 中的字符串可以使用双引号或单引号标示,如果字符串出现引号,则可以使用 \ 来去除引号标示字符串的作用. 几种字符串的表示方法: str1 = "hello" ...
- python 全栈之路
目录 Python 全栈之路 一. Python 1. Python基础知识部分 2. Python -函数 3. Python - 模块 4. Python - 面对对象 5. Python - 文 ...