SICP 习题 (1.37)解题总结
SICP 习题 1.37是一条非常长的题目,主要讲的是无穷连分式。无穷连分式对我来说又是一个陌生的概念,于是又去百度了一番,发现无穷连分式也是一个非常有意思的话题,涉及到无理数的表达。只是我建议大家还是临时不要深入思考它的数学含义,一旦開始思考可能你又会跳进数学的深渊中不可自拔。
无穷连分式的形式例如以下:
就像书中说到的,作为无穷连分式的一个特殊样例,假设N和D都为1的话,f= 1/ φ, 这点能够结合我们之前对黄金切割率的计算证明,这里就不多说了,并且,假设你不能从数学上理解它也无所谓,不影响我们做题目,我们越来越强大了,强大到能够忽略题干中得数学定义直接完毕习题。
题目进一步讨论无穷连分式的计算,由于无穷连分式是无穷的,所以我们无法直接计算它的结果。为了计算一个无穷连分式的大概结果,简单的办法就是计算前面K个项,就像以下这样:
这样我们就能够通过K 次计算完毕某个无穷连分式的计算,当然,计算的结果是一个约数,不是准确数字。
题目要求我们完毕一个名为cont-frac的过程,这个过程接受3个參数,各自是n, d 和k,当中n表示无穷连分式的N部分,d表示无穷连分式的D部分,k代表取几个项进行计算。
假设我们细致看无穷连分式的定义,就会发现这是一个非常典型的递归定义。对于我们定义的cont-frac的过程,基本上它要做的事情就是:(cont-frac n) = N(n) / (D(n) + contact-frac(n+1))
除了上面的递归调用以外,cont-frac中还要完毕的就是对k的比較,确定什么时候结束递归调用,開始返回。
我定义的递归计算步骤例如以下:
(define (cont-frac n d k)
(define (cont-frac-inner n d cur-k)
(if (< cur-k k)
(/ (n cur-k) (+ (d cur-k) (cont-frac-inner n d (+ cur-k 1))))
(d cur-k)))
(cont-frac-inner n d 1))
反过来,实现的迭代计算步骤例如以下:
(define (cont-frac-iter n d k)
(define (cont-frac-iter-inner n d cur-k cur-value)
(if (= cur-k k)
(cont-frac-iter-inner n d (- cur-k 1) (d cur-k))
(if (> cur-k 1)
(cont-frac-iter-inner n d (- cur-k 1) (+ (d cur-k) (/ (n cur-k) cur-value)))
(/ (n cur-k) cur-value)))) (cont-frac-iter-inner n d k 0))
接着,题目还要求我们用这个cont-frac来计算黄金切割率,这个比較简单,直接给n和d传递一个返回1的lambda过程就好了,我的測试方法例如以下:
(define (Phi-test k)
(cont-frac (lambda (i) 1.0)
(lambda (i) 1.0)
k)) (define (Phi-test-iter k)
(cont-frac-iter (lambda (i) 1.0)
(lambda (i) 1.0)
k))
最后,题目中还要求我们确定k取值多少的时候能够计算出有4位精度的黄金切割率,这就非常easy了,多測试几个cont-frac的调用就好了。
SICP 习题 (1.37)解题总结的更多相关文章
- SICP 习题 (1.13) 解题总结
SICP习题1.13要求证明Fib(n)是最接近φn/√5 的整数,其中φ=(1+√5)/2 .题目还有一个提示,提示解题者利用归纳法和斐波那契数的定义证明Fib(n)=(φn - ψn) / √5 ...
- SICP 习题 (1.7) 解题总结
SICP 习题 1.7 是对正文1.1.7节中的牛顿法求平方根的改进,改进部分是good-enough?过程. 原来的good-enough?是判断x和guess平方的差值是否小于0.001,这个过程 ...
- SICP 习题 (1.14)解题总结
SICP 习题 1.14要求计算出过程count-change的增长阶.count-change是书中1.2.2节讲解的用于计算零钱找换方案的过程. 要解答习题1.14,首先你需要理解count-ch ...
- SICP 习题 (1.8) 解题总结
SICP 习题1.8需要我们做的是按照牛顿法求平方根的方法做一个求立方根的过程. 所以说书中讲牛顿法求平方根的内容还是要好好理解,不然后面这几道题做起来就比较困难. 反过来,如果理解了牛顿法求平方根的 ...
- SICP 习题 (1.9) 解题总结
SICP 习题 1.9 开始针对“迭代计算过程”和“递归计算过程”,有关迭代计算过程和递归计算过程的内容在书中的1.2.1节有详细讨论,要完成习题1.9,必须完全吃透1.2.1节的内容,不然的话,即使 ...
- SICP 习题 (1.10)解题总结
SICP 习题 1.10 讲的是一个叫“Akermann函数”的东西,去百度查可以查到对应的中文翻译,叫“阿克曼函数”. 就像前面的解题总结中提到的,我是一个数学恐惧者,看着稍微复杂一点的什么函数我就 ...
- SICP 习题 (1.38)解题总结
SICP 习题1.38 紧跟着习题1.37的方向,要求我们用习题1.37中定义的cont-frac过程计算数学家欧拉大师在论文De Fractionibus Continuis 中提到的e-2的连分式 ...
- SICP 习题 (1.41)解题总结
SICP 习题1.41 看似和周边的题目没有关系,突然叫我们去定义一个叫double的过程,事实上这道题的核心还是高阶函数. 题目要求我们定义一个过程double,它以一个过程作为參数,这个作为參数的 ...
- SICP 习题 (1.39)解题总结
SICP 习题1.39沿着习题1.37, 1.38的方向继续前行,要求我们依据德国数学家J.H.Lambert的公式定义tan-cf过程,用于计算正切函数的近似值. J.H.Lambert的公式例如以 ...
随机推荐
- 【安卓笔记】高速的发展设置界面-----PreferenceActivity
通常app都会有一个设置界面,例如以下: 通常做法是自定义布局,然后在代码里面加入响应函数,并将结果保存到Sharedpreferences中. android给我们提供了PreferenceActi ...
- HttpClient使用具体解释
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,添加�了易用性和灵活性(详细差别,日后我们再讨论),它不仅是client发送Http请求变得e ...
- t持久化与集群部署开发详解
Quartz.net持久化与集群部署开发详解 序言 我前边有几篇文章有介绍过quartz的基本使用语法与类库.但是他的执行计划都是被写在本地的xml文件中.无法做集群部署,我让它看起来脆弱不堪,那是我 ...
- C# WinForm多线程(一)Thread类库
Windows是一个多任务的系统,如果你使用的是windows 2000及其以上版本,你可以通过任务管理器查看当前系统运行的程序和进程.什么是进程呢?当一个程序开始运行时,它就是一个进程,进程所指包括 ...
- 嵌入式Linux学习小结
这两个月一直在学习Linux.作为一名刚開始学习的人,学习期间难免磕磕碰碰.走弯路,可是,抱着不怕失败.多尝试的信念,终于还是坚持下来了. 如今已经清楚Linux的框架,知道怎么去开发一个Linux程 ...
- zTree市县实现三个梯级数据库映射
zTree市县实现三个梯级数据库映射 Province.hbm.xml: <?xml version="1.0" encoding="UTF-8"? &g ...
- 快速排序:升序+降序----java实现
快速排序思路:先把第一个元素令为low下标,最后一个为high下标.并把第一个元素令为temp来作为标准元素.以标准元素来调整数组,使比标准元素小的都在标准元素前,比标准元素大的都在标准元素后.这样一 ...
- java提高篇(五)-----使用序列化实现对象的拷贝
我们知道在Java中存在这个接口Cloneable,实现该接口的类都会具备被拷贝的能力,同时拷贝是在内存中进行,在性能方面比我们直接通过new生成对象来的快,特别是在大对象的生成上,使得性 ...
- Android - 数据存储 -存储键值对
如果你有少量的键值数据需要存储,可以使用SharedPreferencesAPI.SharedPreferences对象指向一个包含键值对的文件并且提供了一些简单的方法来读取它们.每个SharedPr ...
- 【UML】概念、关联、画画(一)
最近画UML画画,于UML观看视频后还没有学会.它是的结果UML九图是不是太懂,我想加深绘制过程的理解,我一个新的水平. 现在我觉得是时候..地介绍一下UML.了解一下它的基本内容.达到深入浅出的效果 ...