正题

题目链接:https://www.luogu.com.cn/problem/P4240


题目大意

\(Q\)组数据给出\(n,m\)求

\[\sum_{i=1}^n\sum_{j=1}^m\varphi(i\times j)
\]

\(1\leq Q\leq 10^4,1\leq n,m\leq 10^5\)


解题思路

首先需要知道的结论就是

\[\varphi(i\times j)=\varphi(i)\varphi(j)\frac{gcd(i,j)}{\varphi(gcd(i,j))}
\]

然后推一下式子

\[\sum_{i=1}^n\sum_{j=1}^m\varphi(i)\varphi(j)\frac{gcd(i,j)}{\varphi(gcd(i,j))}
\]
\[\sum_{d=1}^n\frac{d}{\varphi(d)}\sum_{d|i}^n\sum_{d|j}^m\varphi(i)\varphi(j)[gcd(i,j)=d]
\]

然后莫反一波

\[\sum_{d=1}^n\frac{d}{\varphi(d)}\sum_{z|d}^n\mu(\frac{z}{d})\sum_{z|i}^n\sum_{z|j}^m\varphi(i)\varphi(j)
\]

提出\(z\)来

\[\sum_{z=1}^n(\sum_{z|i}^n\varphi(i)\sum_{z|j}^m\varphi(j))\sum_{d|z}\mu(\frac{z}{d})\frac{d}{\varphi(d)}
\]

后面那个很好求,线性筛然后\(O(n\log n)\)处理就好了,并且设为\(g_i\),后面需要用到。但是前面那个比较麻烦,而且我们好像就推不动了。

这其实是一个挺经典的\(track\)的,考虑平衡规划。设定一个\(T\),对于小于等于\(T\)的部分我们暴力算,对于大于\(T\)的部分我们考虑预处理。

设\(f_{i,j}=\sum_{j|x}^i\varphi(x)\),然后再设一个\(h_{i,j,k}\)

\[h_{i,j,k}=\sum_{x=T+1}f_{i,j}\times f_{i,k}\times g_{i}
\]

这个可以用一个前缀和\(O(n\frac{n}{T}^2)\)的做到。

然后大于\(T\)的部分我们就可以用上面预处理的\(h\)+整除分块做到\(O(\sqrt n)\)了。

总共的时间复杂度是\(O(n\sqrt n+nT^2+Q(T+\sqrt n))\)

将\(T\)设为\(n^{\frac{2}{3}}\)就是\(O(n\sqrt n+n^{\frac{4}{3}}+Qn^{\frac{2}{3}})\)了。


code

// QuantAsk is stoorz's son
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#define ll long long
using namespace std;
const ll N=1e5+10,P=998244353;
ll Q,n,m,cnt,pri[N],inv[N],mu[N],phi[N],g[N],o[N];
bool v[N];vector<ll> f[N],h[N];
void prime(){
phi[1]=mu[1]=1;
for(ll i=2;i<N;i++){
if(!v[i])pri[++cnt]=i,phi[i]=i-1,mu[i]=-1;
for(ll j=1;j<=cnt&&i*pri[j]<N;j++){
v[i*pri[j]]=1;
if(i%pri[j]==0){
phi[i*pri[j]]=phi[i]*pri[j];
break;
}
phi[i*pri[j]]=phi[i]*(pri[j]-1);
mu[i*pri[j]]=-mu[i];
}
}
inv[1]=1;
for(ll i=2;i<N;i++)
inv[i]=P-(P/i)*inv[P%i]%P;
for(ll i=1;i<N;i++)
for(ll j=i;j<N;j+=i)
(g[j]+=inv[phi[i]]*i%P*mu[j/i])%=P;
return;
}
signed main()
{
prime();
ll L=1e5,T=(ll)pow(L,2.0/3.0)+1;
f[0].resize(L+1);
for(ll i=1;i<=L;i++){
f[i].resize(L/i+1);
for(ll j=1;j<=L/i;j++)
f[i][j]=(f[i][j-1]+phi[i*j])%P;
}
h[T].resize((L/T)*(L/T)+1);
for(ll i=T+1;i<=L;i++){
ll p=L/i;h[i].resize(p*p+1);
for(ll j=1;j<=p;j++)
for(ll k=1;k<=p;k++)
h[i][(j-1)*p+k]=(h[i-1][(j-1)*o[i-1]+k]+f[i][j]*f[i][k]%P*g[i]%P)%P;
o[i]=p;
}
scanf("%lld",&Q);
while(Q--){
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);ll ans=0;
for(ll i=1;i<=min(T,n);i++)
(ans+=f[i][n/i]*f[i][m/i]%P*g[i]%P)%=P;
for(ll l=T+1,r;l<=n;l=r+1){
r=min(n/(n/l),m/(m/l));
(ans+=h[r][(n/l-1)*o[r]+m/l]-h[l-1][(n/l-1)*o[l-1]+m/l])%=P;
}
printf("%lld\n",(ans+P)%P);
}
return 0;
}

P4240-毒瘤之神的考验【莫比乌斯反演,平衡规划】的更多相关文章

  1. luogu 4240 毒瘤之神的考验 (莫比乌斯反演)

    题目大意:略 题面传送门 果然是一道神duliu题= = 出题人的题解传送门 出题人的题解还是讲得很明白的 1.关于$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m ...

  2. Luogu4240 毒瘤之神的考验 莫比乌斯反演、根号分治

    传送门 首先有\(\varphi(ij) = \frac{\varphi(i) \varphi(j) \gcd(i,j)}{\varphi(\gcd(i,j))}\),把欧拉函数的定义式代入即可证明 ...

  3. 洛谷 P4240 毒瘤之神的考验 解题报告

    P4240 毒瘤之神的考验 题目背景 \(\tt{Salamander}\)的家门口是一条长长的公路. 又是一年春天将至,\(\tt{Salamander}\)发现路边长出了一排毒瘤! \(\tt{S ...

  4. P4240 毒瘤之神的考验

    题目 P4240 毒瘤之神的考验 神仙题\(emmm\) 前置 首先有一个很神奇的性质: \(\varphi(ij)=\dfrac{\varphi(i)\varphi(j)gcd(i,j)}{\var ...

  5. 洛谷 P4240 - 毒瘤之神的考验(数论+复杂度平衡)

    洛谷题面传送门 先扯些别的. 2021 年 7 月的某一天,我和 ycx 对话: tzc:你做过哪些名字里带"毒瘤"的题目,我做过一道名副其实的毒瘤题就叫毒瘤,是个虚树+dp yc ...

  6. 从 [P4240 毒瘤之神的考验] 谈 OI 中的美学

    感觉这题真的特别有意思,涉及了 OI 中很多非常有意思.非常美的手法,比如--平衡两部分的时间复杂度.\(n \ln n\) 的那个 Trick等等,真的一种暴力的美学. 题目大意: 多组询问,求 \ ...

  7. 洛谷P4240 毒瘤之神的考验 【莫比乌斯反演 + 分块打表】

    题目链接 洛谷P4240 题解 式子不难推,分块打表真的没想到 首先考虑如何拆开\(\varphi(ij)\) 考虑公式 \[\varphi(ij) = ij\prod\limits_{p | ij} ...

  8. YbtOJ#943-平方约数【莫比乌斯反演,平衡规划】

    正题 题目链接:http://www.ybtoj.com.cn/contest/122/problem/3 题目大意 \(S(i)\)表示\(i\)的约数个数,\(Q\)次询问给出\(n,m\)求 \ ...

  9. [luogu 4240] 毒瘤之神的考验

    题目背景 Salamander的家门口是一条长长的公路. 又是一年春天将至,Salamander发现路边长出了一排毒瘤! Salamander想带一些毒瘤回家,但是,这时毒瘤当中钻出来了一个毒瘤之神! ...

随机推荐

  1. java操作excel 工具类

    java操作excel 可参考https://blog.csdn.net/xunwei0303/article/details/53213130 直接上代码: 一.java生成excel文件: pac ...

  2. 【转载】vim 中文帮助手册的安装

    本文出处http://hi.baidu.com/bkhcvzdvmjfkpyr/item/9c238224c1a69498b6326360 vim自带的帮助手册是英文的, 对平时编程的人来说没有多大阅 ...

  3. Spring之JDBC Template

    时间:2017-2-5 18:16 --Spring对不同持久化技术的支持Spring为各种支持的持久化技术都提供了简单操作的模板和回调.ORM持久化技术:    JDBC:        org.s ...

  4. NLP与深度学习(二)循环神经网络

    1. 循环神经网络 在介绍循环神经网络之前,我们先考虑一个大家阅读文章的场景.一般在阅读一个句子时,我们是一个字或是一个词的阅读,而在阅读的同时,我们能够记住前几个词或是前几句的内容.这样我们便能理解 ...

  5. easyexcel

    导出: package com.example.demo.excel.demo0; import com.alibaba.excel.annotation.ExcelProperty; import ...

  6. idea上传项目到github 2019

    记录一下自己查找的从idea上传项目到github的总结 1.默认本地已经安装好git.exe ,idea也已经和git进行匹配 File-setting-versionControl-git-Tes ...

  7. 学习小计: Kaggle Learn Embeddings

    Embedding表示map f: X(高维) -> Y(低维),减小数据维度,方便计算+提高准确率. 参看Kaggle Learn:https://www.kaggle.com/learn/e ...

  8. Learning ROS: Using a C++ class in Python

    http://wiki.ros.org/ROS/Tutorials/Using%20a%20C%2B%2B%20class%20in%20Python This tutorial illustrate ...

  9. 大天使之剑H5游戏超详细图文架设教程

    引言 想体验传奇游戏霸服的快乐吗?想体验满级VIP的尊贵吗?想体验一刀99999的爽快吗?各种极品装备装备.翅膀.宠物通通给你,就在大天使之剑! 本文讲解大天使之剑H5游戏的架设教程,想研究H5游戏如 ...

  10. 阿里云服务器部署mongodb

    在阿里云上买了个服务器,部署mongodb遇到一些坑,解决办法也是从网上搜集而来,把零零碎碎的整理记录一下. 服务器是:Alibaba Cloud Linux 下载安装 mongodb官网下载实在是太 ...