[atARC094D]Worst Case
首先,容易证明满足条件的$ip_{i}$必然是一个前缀
将其看成一张二分图,$i$向满足$ip_{i}<xy$的$p_{i}$连边,即找到一个前缀满足其有完美匹配
二分枚举前缀长度$k$,根据hall定理,即要求$\forall S\in [1,k],\lfloor\frac{xy-1}{\min_{i\in S}i}\rfloor\ge |S|$,很明显$S$是一个后缀时最难满足,换言之即要求$\forall 1\le i\le k,\lfloor\frac{xy-1}{i}\rfloor\ge k-i+1$($S=[i,k]$)
这又等价于$xy>ik-i^{2}+i$,后者是一个关于$i$的二次函数,求最大值即可判定
还有一个特殊的问题,左边的$x$和右边的$y$都不能被选入答案,换言之,即当$i\le x$,右式应为$k-i$;当$\lfloor\frac{xy-1}{\min_{i\in S}i}\rfloor\ge y$,左式(即该式)应为$\lfloor\frac{xy-1}{\min_{i\in S}i}\rfloor-1$
同时对于第二种情况,可以对$|S|$分类讨论,若$|S|<y$则减1无影响,若$|S|\ge y$则必然要减1(若该值小于$y$减1同样无影响),减1也可以看作对$|S|$加1,即$|S|\ge y$时可以加1
更具体的,对$i$作以下分类讨论:
1.对于$1\le i\le \min(x-1,k-y+1)$,求出$-i^{2}+(k+1)i$的最大值;
2.若$x\le k-y+1$,则对于$x<i\le k-y+1$,求出$-i^{2}+(k+2)i$的最大值;若$k-y+1<x$,则对于$k-y+1<i\le \min(x-1,k)$,求出$-i^{2}+ki$的最大值;
3.若$\max(x,k-y+1)<i\le k$,求出$-i^{2}+(k+1)i$的最大值


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define ll long long
4 int t;
5 ll x,y;
6 ll get_mx(ll b,ll l,ll r){
7 if (l>r)return 0;
8 if (b%2==0){
9 if ((l<=b/2)&&(b/2<=r))return b*b/4;
10 return max((b-l)*l,(b-r)*r);
11 }
12 if ((l<=b/2)&&(b/2<=r)||(l<=b/2+1)&&(b/2+1<=r))return (b/2)*(b/2+1);
13 return max((b-l)*l,(b-r)*r);
14 }
15 bool pd(ll k){
16 if (get_mx(k+1,1,min(x-1,k-y+1))>=x*y)return 0;
17 if (get_mx(k+2,x+1,k-y+1)>=x*y)return 0;
18 if (get_mx(k,k-y+2,min(x-1,k))>=x*y)return 0;
19 if (get_mx(k+1,max(x,k-y+1)+1,k)>=x*y)return 0;
20 return 1;
21 }
22 int main(){
23 scanf("%d",&t);
24 while (t--){
25 scanf("%lld%lld",&x,&y);
26 if (x>y)swap(x,y);
27 ll l=0,r=2e9;
28 while (l<r){
29 ll mid=(l+r+1>>1);
30 if (pd(mid))l=mid;
31 else r=mid-1;
32 }
33 printf("%lld\n",l-(l>=x));
34 }
35 }
[atARC094D]Worst Case的更多相关文章
- AtCoder Regular Contest 094 D Worst Case
Worst Case 思路: 使 a <= b 当 a == b 时 或者 a == b - 1 时,答案显然为 2 * (a - 1) 否则找到最大的 c ,使得 c * c < a * ...
- LightOJ - 1322 - Worst Case Trie(DP)
链接: https://vjudge.net/problem/LightOJ-1322 题意: In Computer Science Trie or prefix tree is a data st ...
- 进阶篇:5.1)极值法(Worst Case ,WC)
本章目的:了解极值法,运用极值法: 1.极值法定义 极值法(WC,Worse Case):极值法是考虑零件尺寸最不利的情况,通过尺寸链中尺寸的最大值或最小值来计算关键尺寸的值: 计算公式: 2.极值法 ...
- AtCoder Regular Contest 094 D Worst Case【思维题】
https://arc094.contest.atcoder.jp/tasks/arc094_b 题意: 在2次超多人的比赛中,你取得的成绩依次为第A名和第B名.一个人的成绩为a和b时,当且仅当ab& ...
- 算法最坏,平均和最佳情况(Worst, Average and Best Cases)-------geeksforgeeks 翻译
最坏,平均和最佳运行时间(Worst, Average and Best Cases) 在上一篇文章中,我们讨论到了渐进分析可以解决分析算法的问题,那么在这一篇中,我们用线性搜索来举例说明一下如何用渐 ...
- Crystal Clear Applied: The Seven Properties of Running an Agile Project (转载)
作者Alistair Cockburn, Crystal Clear的7个成功要素,写得挺好. 敏捷方法的关注点,大家可以参考,太激动所以转载了. 原文:http://www.informit.com ...
- [LeetCode] Guess Number Higher or Lower II 猜数字大小之二
We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...
- Linux CGroup之freezer分析与应用
Linux Kernel:4.4.17 CGroup的freezer子系统对于成批作业管理系统很有用,可以成批启动/停止任务,以达到及其资源的调度. freezer子系统也有助于针对运行一组任务设置检 ...
- Uva 11732 strcmp() Anyone?
strcmp() Anyone? Time Limit: 2000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu [Subm ...
随机推荐
- React Native之新架构中的Turbo Module实现原理分析
有段时间没更新博客了,之前计划由浅到深.从应用到原理,更新一些RN的相关博客.之前陆续的更新了6篇RN应用的相关博客(传送门),后边因时间问题没有继续更新.主要是平时空余时间都用来帮着带娃了,不过还是 ...
- 一次OutOfMemoryError: GC overhead limit exceeded
现象: 由于需要将mysql表中的过期数据在凌晨定时读取出过滤后转入到MongoDB,一个转换SQL达到百行,而且有几十个,集中运行后程序反馈异常: Handler dispatch failed; ...
- Hive面试题整理(一)
1.Hive表关联查询,如何解决数据倾斜的问题?(☆☆☆☆☆) 1)倾斜原因:map输出数据按key Hash的分配到reduce中,由于key分布不均匀.业务数据本身的特.建表时考虑不周.等原因 ...
- 【Java虚拟机11】线程上下文类加载器
前言 目前学习到的类加载的知识,都是基于[双亲委托机制]的.那么JDK难道就没有提供一种打破双亲委托机制的类加载机制吗? 答案是否定的. JDK为我们提供了一种打破双亲委托模型的机制:线程上下文类加载 ...
- Tekton+Argocd实现自动化流水线
目录 什么是tekton 安装tekton 安装Dashboard Tekton提供的CRD 安装argocd 创建argocd 安装客户端 连接argocd server 创建App 集群中查看效果 ...
- Coursera Deep Learning笔记 改善深层神经网络:超参数调试 正则化以及梯度相关
笔记:Andrew Ng's Deeping Learning视频 参考:https://xienaoban.github.io/posts/41302.html 参考:https://blog.cs ...
- 离线状态迁移Anaconda虚拟环境
离线状态迁移Anaconda虚拟环境 同样是项目需求,需要布署的服务器上的Anaconda安装到了普通账户下 而后续所有的内容都需要通过root账户进行操作,而服务器已经布署,联网比较麻烦 本文提出, ...
- BUAA_2020_软件工程_个人项目作业
作业抬头(1') 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人项目作业 我在这个课程的目标是 了解软件工程的技术,掌握工程化开发的能力 这 ...
- spring cloud config 结合 spring cloud bus实现配置自定的刷新
在线上环境中,有时候我们希望系统中的某些配置参数在修改后,可以立即生效而不用重新启动服务.由上一节我们知道,我们可以把配置文件统一放到配置服务中进行管理,这一节我们在配置中心中整合spring clo ...
- Photoshop教程,视频MP4格式转换为GIF格式
转自百度问题 https://zhidao.baidu.com/question/1497485136643778259.html Adobe PhotoShop软件的最bai新du本是可以编辑视zh ...