POJ 2446 Chessboard(二分图最大匹配)
题意:
M*N的棋盘,规定其中有K个格子不能放任何东西。(即不能被覆盖)
每一张牌的形状都是1*2,问这个棋盘能否被牌完全覆盖(K个格子除外)
思路:
M、N很小,把每一个可以覆盖的格子都离散成一个个点,然后二分图最大匹配。
一个重要的问题**:可不可能存在建完的图是这样的情况:1-2,2-3,3-4,4-5,5-1?这种情况二分图最大匹配是5,但实际上答案是不对的。
证明:不可能存在这样的由奇个点构成的环图。我们按这种方法来看看能不能构造出这样一个棋盘。
假设有2k+1个个格(奇数),则第k+1个格一定有一个位置。并且一定与第k个格和第k+2个格相邻。
假设第k个格与第k+2个格的横坐标之差是x,纵坐标之差是y。则有x+y=2。(画个图)
接下来添加第k-1个格和第k+3个格,然后添加第k-2个格和第k+4个格,......一直到添加完最后一对,即第1个格和第2k+1个格,然后结束。
每添加一对格时,可以发现新的x+y的值要么是上一次的x+y的值-2,要么是不变,要么是+2。
而真实的情况是添加到最后一对,即第1个格和第2k+1个格,这两个格子是相邻的,也就是最后一次的x+y=1。而这是不可能的。
故不存在那种图。故直接二分图最大匹配是正确的。
代码:
int n,m,k;
int board[35][35];
vector<int> graph[1500];
int cx[1500],cy[1500];
bool bmask[1500];
int cc; int findPath(int u){
int L=graph[u].size();
rep(i,0,L-1){
int v=graph[u][i];
if(!bmask[v]){
bmask[v]=true;
if(cy[v]==-1||findPath(cy[v])){
cy[v]=u;
cx[u]=v;
return 1;
}
}
}
return 0;
}
int MaxMatch(){
int ans=0;
rep(i,1,cc) cx[i]=cy[i]=-1;
rep(i,1,cc) if(cx[i]==-1){
mem(bmask,false);
ans+=findPath(i);
}
return ans;
} int main(){
while(scanf("%d%d%d",&m,&n,&k)!=EOF){
mem(board,0);
rep(i,1,k){
int x,y;
scanf("%d%d",&y,&x);
board[x][y]=-1;
}
rep(i,1,m) rep(j,1,n){
if(board[i][j]==-1) continue;
board[i][j]=++cc;
}
rep(i,1,cc) graph[i].clear();
rep(k,0,3) rep(i,1,m) rep(j,1,n){
if(board[i][j]==-1) continue;
int ni=i+uu[k], nj=j+vv[k];
if(ni>0 && ni<=m && nj>0 && nj<=n && board[ni][nj]!=-1) graph[board[i][j]].push_back(board[ni][nj]);
}
int dd=MaxMatch();
if(dd==cc)
puts("YES");
else
puts("NO");
}
}
POJ 2446 Chessboard(二分图最大匹配)的更多相关文章
- POJ 2446 Chessboard (二分图最大匹配)
题目链接:http://poj.org/problem?id=2446 给你一个n*m的棋盘,其中有k个洞,现在有1*2大小的纸片,纸片不能覆盖洞,并且每个格子最多只能被覆盖一次.问你除了洞口之外这个 ...
- POJ 2446 Chessboard (二分图匹配)
题意 在一个N*M的矩形里,用1*2的骨牌去覆盖该矩形,每个骨牌只能覆盖相邻的两个格子,问是否能把每个格子都盖住.PS:有K个孔不用覆盖. 思路 容易发现,棋盘上坐标和为奇数的点只会和坐标和为偶数的点 ...
- poj 2446 Chessboard (二分图利用奇偶性匹配)
Chessboard Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13176 Accepted: 4118 Descr ...
- POJ 1469 COURSES 二分图最大匹配 二分图
http://poj.org/problem?id=1469 这道题我绝壁写过但是以前没有mark过二分图最大匹配的代码mark一下. 匈牙利 O(mn) #include<cstdio> ...
- 【网络流#6】POJ 3041 Asteroids 二分图最大匹配 - 《挑战程序设计竞赛》例题
学习网络流中ing...作为初学者练习是不可少的~~~构图方法因为书上很详细了,所以就简单说一说 把光束作为图的顶点,小行星当做连接顶点的边,建图,由于 最小顶点覆盖 等于 二分图最大匹配 ,因此求二 ...
- POJ 2446 Chessboard【二分图最大匹配】
<题目链接> 题目大意: 给你一个n*m的棋盘,其中有k个洞,现在有1*2大小的纸片,纸片不能覆盖洞,并且每个格子最多只能被覆盖一次.问你除了洞口之外这个棋盘是否能被纸片填满. 解题分析: ...
- poj - 3041 Asteroids (二分图最大匹配+匈牙利算法)
http://poj.org/problem?id=3041 在n*n的网格中有K颗小行星,小行星i的位置是(Ri,Ci),现在有一个强有力的武器能够用一发光速将一整行或一整列的小行星轰为灰烬,想要利 ...
- poj 2446 Chessboard (二分匹配)
Chessboard Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 12800 Accepted: 4000 Descr ...
- Poj(1469),二分图最大匹配
题目链接:http://poj.org/problem?id=1469 COURSES Time Limit: 1000MS Memory Limit: 10000K Total Submissi ...
随机推荐
- BZOJ_1008 越狱(快速幂)
http://www.lydsy.com/JudgeOnline/problem.php?id=1008 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教 ...
- PHP的HTTP验证
在日常开发中,我们进行用户登录的时候,大部分情况下都会使用 session 来保存用户登录信息,并以此为依据判断用户是否已登录.但其实 HTTP 也提供了这种登录验证机制,我们今天就来学习关于 HTT ...
- maven编译打包
sonar扫描java项目,需要使用maven 来到maven项目下第一件事情编译打包,注意代码扫描是在编译之后的:https://blog.csdn.net/qq_34556414/article/ ...
- ul li 标签
去除制表符: li{ list-style:none; } ul{ /* 靠左*/ padding-left: 5px; }
- 鸿蒙内核源码分析(用栈方式篇) | 程序运行场地谁提供的 | 百篇博客分析OpenHarmony源码 | v20.04
百篇博客系列篇.本篇为: v20.xx 鸿蒙内核源码分析(用栈方式篇) | 程序运行场地谁提供的 | 51.c.h .o 精读内核源码就绕不过汇编语言,鸿蒙内核有6个汇编文件,读不懂它们就真的很难理解 ...
- LaTeX Vscode 配置
安装:https://www.latexstudio.net/archives/51801.html LaTeX 安装 & 宏包升级 & 入门:https://blog.csdn.ne ...
- JAVA 150道笔试题知识点整理
JAVA 笔试题 整理了几天才整理的题目,都是在笔试或者面试碰到的,好好理解消化下,对你会有帮助,祝你找工作顺利,收到满意的 offer . 1.Java 基础知识 1.1 Java SE 语法 &a ...
- Pytorch学习2020春-1-线性回归
线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现 线性回归的基本要素 模型 为了简单起见,这里我们假设价格只取决于房屋状况的两个因素, ...
- The Data Way Vol.1|风口下的开源市场:如何看待开源与商业的关系?
关于「The Data Way」 「The Data Way」是由 SphereEx 公司出品的一档播客节目.这里有开源.数据.技术的故事,同时我们关注开发者的工作日常,也讨论开发者的生活日常:我们聚 ...
- 洛谷T31018 经典题丶改(LCT+离线)
真的是一个大好题啊! QWQ首先我们考虑这种问题,如果直接在线做,估计应该是做不了,那我们是不是可以直接考虑离线. 将所有询问都按照\(r\)来排序. 然后依次加入每条边,计算\(a[i]<=n ...