题解 Star Way To Heaven
这整场都不会……这题想二分不会check
其实check很好写,考虑一个mid的实际意义
即为check在不靠近每个star及边界mid距离内的前提下,能不能到达\((n,m)\)
其实可以转化一下,以每个star为圆心,mid为半径画圆
如果两个圆相交就在这两个圆之间连边
并查集维护连通性,如果上下边界连通就说明所有可行路径都被封上了
可以\(O(k^2logn)\)二分
但是还有\(O(k^2)\)解法:
考虑是什么在限制整条路径上的最小值
如果将所有star之间连边,就一定有几条权值最小的边连出了一条从上边界到下边界的链
无论如何都必须通过这条链
可以构建一棵最小生成树,就确保了权值最小
那问题可以转化为在权值最小的这条链上找一条权值最大的边
- 解最小值最大问
prim板子:
我承认当年因为觉得kruskal复杂度更优我prim是水过去的,但事实上完全图上kruskal多个log
void prim() {
memset(d, 127, sizeof(d));
d[1]=0;
for (int i=1,x; i<n; ++i) {
x=0;
for (int j=1; j<=n; ++j)
if (!vis[j] && (!x||d[j]<d[x])) x=j;
vis[x]=1;
for (int j=1; j<=n; ++j) if (!vis[j]) d[j]=min(d[j], dis[x][j]);
}
}
其它细节见代码注释
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 6005
#define ll long long
#define ld long double
#define usd unsigned
#define ull unsigned long long
//#define int long long
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
char buf[1<<21], *p1=buf, *p2=buf;
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
}
int n, m, k;
double x[N], y[N];
namespace force{
double ans=1e30;
void solve() {
for (int i=1; i<=k; ++i) {
ans=min(ans, min(y[i], 1.0*m-y[i]));
for (int j=i+1; j<=k; ++j) ans=min(ans, sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])));
}
printf("%.8lf\n", ans);
exit(0);
}
}
namespace task_MLE{
double dis[N][N], d[N];
short fa[N];
bool vis[N];
inline int find(int p) {return fa[p]==p?p:fa[p]=find(fa[p]);}
void solve() {
//cout<<double(sizeof(dis))/1024/1024<<endl;
memset(d, 0x7f, sizeof(d));
memset(dis, 0x7f, sizeof(dis));
for (int i=1; i<=k; ++i)
for (int j=1; j<=k; ++j)
if (i!=j) dis[i][j]=dis[j][i]=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])); //, cout<<"dis"<<i<<' '<<j<<' '<<dis[i][j]<<endl;
for (int i=1; i<=k; ++i) dis[i][k+1]=dis[k+1][i]=y[i];
for (int i=1; i<=k; ++i) dis[i][k+2]=dis[k+2][i]=1.0*m-y[i];
for (int i=1; i<=k+2; ++i) fa[i]=i;
d[1]=0;
for (int i=1,x; i<=k+1; ++i) {
x=0;
for (int j=1; j<=k+2; ++j)
if (!vis[j] && (!x||d[j]<d[x])) x=j;
vis[x]=1; fa[find(x)]=find(1);
//cout<<"x: "<<x<<endl;
for (int j=1; j<=k+2; ++j) if (!vis[j]) d[j]=min(d[j], dis[x][j]); //, cout<<"d["<<j<<"]: "<<d[j]<<endl;
if (find(k+1)==find(k+2)) break;
}
double maxn=0;
for (int i=1; i<=k+2; ++i) if (vis[i]) maxn=max(maxn, d[i]);
printf("%.8lf\n", maxn/2);
}
}
namespace task{
double d[N], ans;
short fa[N];
bool vis[N];
inline int find(int p) {return fa[p]==p?p:fa[p]=find(fa[p]);}
inline double dis(int i, int j) {
if (i>k||j>k) {
if (i>k&&j>k) return 1e30;
if (i<=k) swap(i, j);
return (i==k+1)?y[j]:(1.0*m-y[j]);
}
else return sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
}
void solve() {
memset(d, 0x7f, sizeof(d));
for (int i=1; i<=k+2; ++i) fa[i]=i;
d[k+1]=0;
int cnt=0;
for (int i=1,x; i<=k+1; ++i) {
cnt=i;
x=0;
for (int j=1; j<=k+2; ++j)
if (!vis[j] && (!x||d[j]<d[x])) x=j;
vis[x]=1; fa[find(x)]=find(k+1);
//cout<<x<<endl;
// 这里一开始的写法是因为没有注意到只有从k+1开始搜,才能满足所搜到的所有能对答案产生贡献的点都在连接上下边界的最小路径上
// 由于prim的性质,我们所加到集合中的点不一定会在那条最小路径上,但考虑最后当我们加入一个点,k+1和k+2变得连通时
// 这个点一定在最小路径上,而之前加的点分两种情况
// 若不在最小路径上,则由它扩展出来的点也不在最小路径上,因为我们要求最大值,最后一定需要加入权值更大的边使图连通,所以它一定不对答案产生贡献
// 若在最小路径上,注意一个事情(这里被卡了), 因为prim维护的是点集,而且是基于连通性扩展的,所以可以构造出一种情况,
// 使后加的边权值更小(之前它因为和已知集合中的点没有连边而没有被选进去),所以**prim所扩展的边权值不一定递增**
for (int j=1; j<=k+2; ++j) if (!vis[j]) d[j]=min(d[j], dis(x, j)); //, cout<<"d["<<j<<"]: "<<d[j]<<endl;
if (find(k+1)==find(k+2) || i==k+1) {
double maxn=0;
for (int i=1; i<=k+2; ++i) if (vis[i]) maxn=max(maxn, d[i]);
printf("%.8lf\n", maxn/2);
//printf("%.8lf\n", d[x]/2);
exit(0);
}
}
}
}
signed main()
{
#ifdef DEBUG
freopen("1.in", "r", stdin);
#endif
n=read(); m=read(); k=read();
for (int i=1; i<=k; ++i) x[i]=read(), y[i]=read();
//if (k==1) {printf("%.8lf", max(y[1], m-y[1])/2); return 0;}
//if (k==2) {printf("%.8lf", min(min(max(y[1], m-y[1]), max(y[2], m-y[2])), sqrt((x[1]-x[2])*(x[1]-x[2])+(y[1]-y[2])*(y[1]-y[2])))/2); return 0;}
//force::solve();
task::solve();
return 0;
}
题解 Star Way To Heaven的更多相关文章
- [CSP-S模拟测试]:Star Way To Heaven(最小生成树Prim)
题目描述 小$w$伤心的走上了$Star\ way\ to\ heaven$. 到天堂的道路是一个笛卡尔坐标系上一个$n\times m$的长方形通道(顶点在$(0,0)$和$(n,m)$),小$w$ ...
- 7.15考试总结(NOIP模拟16)[Star Way To Heaven·God Knows·Lost My Music]
败者死于绝望,胜者死于渴望. 前言 一看这个题就来者不善,对于第一题第一眼以为是一个大模拟,没想到是最小生成树. 对于第二题,先是看到了状压可以搞到的 20pts 然后对着暴力一顿猛调后来发现是题面理 ...
- NOIP模拟16:「Star Way To Heaven·God Knows·Loost My Music」
T1:Star Way To Heaven 基本思路: 最小生成树. 假如我们将上边界与下边界看作一个点,然后从上边界经过星星向下边界连边,会发现,他会形成一条线将整个矩形分为左右两个部分. ...
- Star Way To Heaven
题目描述 小 x伤心的走上了 Star way to heaven. 到天堂的道路是一个笛卡尔坐标系上一个 n*m的长方形通道 顶点在0,0 和 . 小 n,m 从最左边任意一点进入,从右边任意一点走 ...
- 20190817-T1-LOJ6322「雅礼国庆 2017 Day6」Star Way To Heaven
写这篇题解是因为作者太蒻已经忘了最小生成树了. <题面> 这个题还真是想不到最小生成树. $80\%$算法 复杂度:$\Theta(k^2 \log N )$ 用了二分答案(明显答案具有单 ...
- NOIP 模拟 $16\; \rm Star Way To Heaven$
题解 \(by\;zj\varphi\) 看懂题!!! 从最左穿到最右,一定会经过两个星星之间或星星和边界之间,那么我们穿过时当前最优一定是走中点 而我们要求最小的距离最大,那么我们将所有星星和边界( ...
- 「模拟8.17」star way to heaven(并查集,最小生成树)
80分打法 首先二分最后答案,答案即为r,可看作以每个k为圆心r为半径的圆 我们进行并查集维护,维护相交的圆的边界 最后判断是否存在圆将上下边界覆盖,如有证明不行 1 #include<iost ...
- NOIP模拟测试24「star way to hevaen·lost my music」
star way to heaven 题解 大致尝试了一下并查集,记忆化搜索,最小生成树 最小生成树是正解,跑最小生成树然后找到最大的值 欧几里德距离最小生成树学习 prim楞跑 至于为什么跑最小生成 ...
- NOIp2018集训test-9-17(am)
这是一套去年在长沙考过的题,但是我当时就没理清楚+没写题解(我以前很多博客都写得跟shi一样,完全没有意义,看到就想打当时的我),所以又考得稀烂. T1.star way to heaven 容易想到 ...
随机推荐
- PHPCMSV9版本代码审计学习
学习代码审计,自己简单记录一下.如有错误望师傅斧正. PHPCMS预备知识 PHPCMS是采用MVC设计模式开发,基于模块和操作的方式进行访问,采用单一入口模式进行项目部署和访问,无论访问任何一个模块 ...
- Docker原理:Cgroup
目录 Cgroup 主要功能 术语 参考 Cgroup 全称Linux Control Group, 是Linux内核的一个功能,用来限制.控制与分离一个进程组群的资源(如CPU.内存.磁盘输入输出等 ...
- Python单元测试框架unittest之单用例管理(二)
概述 利用python进行测试时,测试用例的加载方式有2种: 一种是通过unittest.main()来启动所需测试的测试模块,上篇文章就是使用的这种方式: 一种是添加到testsuite集合中再加载 ...
- 「CF527E」 Data Center Drama
「CF527E」 Data Center Drama 传送门 显然一个环肯定满足题目条件. 然后我就开始想:先整一棵 \(\texttt{DFS}\) 树,然后非树边从深度深的节点向深度浅的节点连边, ...
- matlab——线性规划
@ 目录 前言 一.基本概念 二.matlab实现 1.常用函数 2.常见变形 参考书目 前言 线性规划是数学规划中的一个重要分支,常用于解决如何利用现有资源来安排生产,以取得最大经济效益的问题.本文 ...
- 日志采集工具Flume的安装与使用方法
安装Flume,参考厦门大学林子雨教程:http://dblab.xmu.edu.cn/blog/1102/ 并完成案例1 1.案例1:Avro source Avro可以发送一个给定的文件给Flum ...
- 字符串的模式匹配算法——KMP模式匹配算法
朴素的模式匹配算法(C++) 朴素的模式匹配算法,暴力,容易理解 #include<iostream> using namespace std; int main() { string m ...
- [刘阳Java]_酷炫视频播放器制作_JS篇
此文章是接着上次写的<酷炫视频播放器制作_界面篇>将其完善,我们主要给大家介绍一下如何利用JS脚本来控制视频的播放.为了让大家能够保持对要完成的功能有直接的了解,我们还是将效果图附到文章里 ...
- [刘阳Java]_easyui-panel组件入门级_第3讲
EasyUI中的panel组件在前面一节中我们简单告诉了大家代码如何写.这一节我们会从panel的入门级开始讲起走,重点包括它的事件监听,属性tool介绍 1. 事件监听-通过data-options ...
- Python (paramiko) 连接Linux服务器
目录 参考资料 Paramiko 安装 连接Linux 文件上传/下载 文件封装 其他 参考资料 https://www.liujiangblog.com/blog/15/ https://blog. ...