题解 P3317 [SDOI2014]重建
题解
前置芝士:深度理解的矩阵树定理
矩阵树定理能求生成树个数的原因是,它本质上求的是:
\]
其中 \(w_e\) 是边权,那么我们会发现其实当边权是 \(1\) 时,本式所求即为生成树个数。
那么回到这题来,这题让求的是
\]
很容易看出来,这个式子和上面矩阵树的式子很像。让我们来推一波。
\]
此式和上面答案更近了一步,我们只需把 \(\prod_{e\in T}(1-w_e)\) 消掉即可。
显然
\]
所以,我们要求的就是 \(\sum_{T}\prod_{e\in T}\frac{w_e}{1-w_e}\)
于是我们在初始化 \(Laplace\) 矩阵时直接以 \(\frac{w_e}{1-w_e}\) 为边权。
有一个需要注意的地方,因为 \(w_e\in [0,1]\),而 \(w_e\) 为分子,当 \(w_e=0\) 是,原式趋于无穷小,所以我们可以将其赋为 \(eps\) ,在分母上的 \(1-w_e\) 则反过来,若 \(w_e=1\) 则原式趋于无穷大,所以可以赋其为 \(1-eps\) 。
至于为什么这样,是为了防止式子在计算机中浮点数例外。
Code
\(AC\kern 0.5emCODE:\)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
inline int read() {
ri x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*f;
}
}
using IO::read;
namespace nanfeng{
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
typedef double db;
static const int N=55;
static const db eps=1e-8;
db G[N][N],ans=1.0,tmp=1.0;
int n;
inline void Gauss() {
int tr=0;
for (ri i(1);i<=n;p(i)) {
int k=i;
for (ri j(i+1);j<=n;p(j)) if (fabs(G[j][i])>fabs(G[k][i])) k=j;
if (k!=i) swap(G[i],G[k]),tr^=1;
// for (ri j(1);j<=n;p(j)) printf("%.8lf ",G[i][j]);
// puts("");
for (ri j(i+1);j<=n;p(j)) {
db tmp=G[j][i]/G[i][i];
for (ri l(i);l<=n;p(l)) G[j][l]-=tmp*G[i][l];
}
if (fabs(G[i][i])<eps) {ans=0;return;}
ans=ans*G[i][i];
// printf("ans=%.10lf G[i][i]=%.10lf\n",ans,G[i][i]);
}
if (tr) ans=-ans;
}
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
n=read();
for (ri i(1);i<=n;p(i)) {
for (ri j(1);j<=n;p(j)) scanf("%lf",&G[i][j]);
}
for (ri i(1);i<=n;p(i)) {
for (ri j(1);j<=n;p(j)) {
if (G[i][j]<eps) G[i][j]=eps;
if ((1.0-G[i][j])<eps) G[i][j]=1.0-eps;
if (i<j) tmp*=(1.0-G[i][j]);
G[i][j]/=(1.0-G[i][j]);
}
}
// printf("tmp=%.10lf\n",tmp);
for (ri i(1);i<=n;p(i)) {
G[i][i]=0.0;
for (ri j(1);j<=n;p(j)) {
if (i!=j) G[i][i]+=G[i][j],G[i][j]=-G[i][j];
}
}
n-=1;
Gauss();
printf("%.10lf\n",ans*tmp);
return 0;
}
}
int main() {return nanfeng::main();}
题解 P3317 [SDOI2014]重建的更多相关文章
- P3317 [SDOI2014]重建(Matrix-tree+期望)
P3317 [SDOI2014]重建 详情看这位神犇的blog 剩下的注释在code里吧....... #include<iostream> #include<cstdio> ...
- P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元
传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include ...
- 洛谷P3317 [SDOI2014]重建 [Matrix-Tree定理]
传送门 思路 相信很多人像我一样想直接搞Matrix-Tree定理,而且还过了样例,然后交上去一分没有. 但不管怎样这还是对我们的思路有一定启发的. 用Matrix-Tree定理搞,求出的答案是 \[ ...
- P3317 [SDOI2014]重建
思路 变元矩阵树定理可以统计最小生成树边权积的和,将A矩阵变为边权,D变为与该点相连的边权和,K=D-A,求K的行列式即可 把式子化成 \[ \begin{align}&\sum_{T}\pr ...
- 【BZOJ 3534】 3534: [Sdoi2014]重建 (Matrix-Tree Theorem)
3534: [Sdoi2014]重建 Time Limit: 10 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 709 Solved: 32 ...
- BZOJ3534:[SDOI2014]重建——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3534 https://www.luogu.org/problemnew/show/P3317 T国 ...
- 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元
题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...
- 【BZOJ 3534】: [Sdoi2014]重建
题目大意:(略) 题解: 相对误差……我好方. 考虑答案应该为所有合法答案概率之和.对于一个合法的生成树,其出现概率应为所有选取边的概率出现的积 乘以 所有未选取边不出现概率的积. 即: $\;\pr ...
- BZOJ3534 [Sdoi2014]重建 【矩阵树定理】
题目 T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 辛运的是,此前T国政府 ...
随机推荐
- Python获取list中指定元素的索引
在平时开发过程中,经常遇到需要在数据中获取特定的元素的信息,如到达目的地最近的车站,橱窗里面最贵的物品等等.怎么办?看下面 方法一: 利用数组自身的特性 list.index(target), 其中a ...
- Shell编程之条件语句:if、case语句
Shell编程之条件语句:if.case语句 一.条件测试 1)test命令测试 2)整数值比较 ...
- MapReduce学习总结之java版wordcount实现
一.代码实现: package rdb.com.hadoop01.mapreduce; import java.io.IOException; import org.apache.hadoop.con ...
- 在Java中,负数的绝对值竟然不一定是正数!!!
绝对值是指一个数在数轴上所对应点到原点的距离,所以,在数学领域,正数的绝对值是这个数本身,负数的绝对值应该是他的相反数. 这几乎是每个人都知道的. 在Java中,想要获得有个数字的绝对值,可以使用ja ...
- DataGridView 显示行号与背景颜色
实现的方式有好几种.之前使用的是下面这种在RowPostPaint事件中实现,效率不高.每次改变控件尺寸时都会执行 private void MsgGridView_RowPostPaint(obje ...
- LinuxMint 19/Ubuntu 19.10重置开始菜单以及任务栏
====================== 问题:任务栏以及开始菜单弄不见了 解决方法: 快捷键打开终端,输入重置命令: dconf reset -f /
- spring第三章
第三章 实现AOP AOP:面向方面编程,AOP能够使您将所有模块共有的特性与应用程序的主要业务逻辑隔离开 一.AOP介绍 横切关注点:在Web应用程序中,有一些服务(如登录.安全和事务管理)不是应用 ...
- jvm源码解读--04 常量池 常量项的解析CONSTANT_Class_info
接上篇的继续 ConstantPool* constant_pool = ConstantPool::allocate(_loader_data, length, CHECK_(nullHandle) ...
- 防止因提供的sql脚本有问题导致版本bvt失败技巧
发版本时,可能会由于测试库和开发库表结构不一样而导致数据库脚本在测试那边执行时出错,导致版本BVT失败,以下技巧可解决此问题. 步骤:备份目标库,在备份库中执行将要提供的sql脚本看有无问题,若没问题 ...
- 利用swagger和API Version实现api版本控制
场景: 在利用.net core进行api接口开发时,经常会因为需求,要开发实现统一功能的多版本的接口.比如版本V1是给之前用户使用,然后新用户有新需求,这时候可以单独给这个用户写接口,也可以在V1基 ...