tensorflow-yolov4实施方法

tensorflow-yolov4-tflite

YOLOv4: Optimal Speed and Accuracy of Object Detection

文献链接:https://arxiv.org/abs/2004.10934

代码链接:https://github.com/AlexeyAB/darknet

摘要

有大量的特征被认为可以提高卷积神经网络(CNN)的精度。需要在大型数据集上对这些特征的组合进行实际测试,并对结果进行理论证明。某些功能只在某些模型上操作,某些问题只在某些模型上操作,或只在小规模数据集上操作;而某些功能(如批处理规范化和剩余连接)适用于大多数模型、任务和数据集。我们假设这些通用特征包括加权剩余连接(WRC)、跨阶段部分连接(CSP)、跨小批量规范化(CmBN)、自对抗训练(SAT)和Mish激活。使用了新功能:WRC、CSP、CmBN、SAT、误激活、马赛克数据增强、CmBN、DropBlock正则化和CIoU丢失,并将其中一些功能结合起来,以达到最新的结果:43.5%AP(65.7%AP50)的MS COCO数据集,在Tesla V100上以约65 FPS的实时速度。

YOLOv4 Implemented in Tensorflow 2.0. Convert YOLO v4, YOLOv3, YOLO tiny .weights to .pb, .tflite and trt format for tensorflow, tensorflow lite, tensorRT.

Download yolov4.weights file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT

环境需要Prerequisites

  • Tensorflow 2.1.0
  • tensorflow_addons 0.9.1 (required for mish activation)

Demo

# yolov4

python detect.py --weights ./data/yolov4.weights --framework tf --size 608 --image ./data/kite.jpg

# yolov4 tflite

python detect.py --weights ./data/yolov4-int8.tflite --framework tflite --size 416 --image ./data/kite.jpg

Convert to tflite

# yolov4
python convert_tflite.py --weights ./data/yolov4.weights --output ./data/yolov4.tflite
 
# yolov4 quantize float16
python convert_tflite.py --weights ./data/yolov4.weights --output ./data/yolov4-fp16.tflite --quantize_mode float16
 
# yolov4 quantize int8
python convert_tflite.py --weights ./data/yolov4.weights --output ./data/yolov4-fp16.tflite --quantize_mode full_int8 --dataset ./coco_dataset/coco/val207.txt

Convert to TensorRT

# yolov3
python save_model.py --weights ./data/yolov3.weights --output ./checkpoints/yolov3.tf --input_size 416 --model yolov3
python convert_trt.py --weights ./checkpoints/yolov3.tf --quantize_mode float16 --output ./checkpoints/yolov3-trt-fp16-416
 
# yolov3-tiny
python save_model.py --weights ./data/yolov3-tiny.weights --output ./checkpoints/yolov3-tiny.tf --input_size 416 --tiny
python convert_trt.py --weights ./checkpoints/yolov3-tiny.tf --quantize_mode float16 --output ./checkpoints/yolov3-tiny-trt-fp16-416
 
# yolov4
python save_model.py --weights ./data/yolov4.weights --output ./checkpoints/yolov4.tf --input_size 416 --model yolov4
python convert_trt.py --weights ./checkpoints/yolov4.tf --quantize_mode float16 --output ./checkpoints/yolov4-trt-fp16-416

Evaluate on COCO 2017 Dataset

# run script in /script/get_coco_dataset_2017.sh to download COCO 2017 Dataset
# preprocess coco dataset
cd data
mkdir dataset
cd ..
cd scripts
python coco_convert.py --input ./coco/annotations/instances_val2017.json --output val2017.pkl
python coco_annotation.py --coco_path ./coco 
cd ..
 
# evaluate yolov4 model
python evaluate.py --weights ./data/yolov4.weights
cd mAP/extra
python remove_space.py
cd ..
python main.py --output results_yolov4_tf

mAP50 on COCO 2017 Dataset

 

Benchmark

python benchmarks.py --size 416 --model yolov4 --weights ./data/yolov4.weights

TensorRT performance

训练模型

# Prepare your dataset
# If you want to train from scratch:
In config.py set FISRT_STAGE_EPOCHS=0 
# Run script:
python train.py
# Transfer learning: 
python train.py --weights ./data/yolov4.weights

训练性能还没有完全重现,建议使用Alex的Darknet训练自己的数据,然后将.weights转换为tensorflow或tflite。

 

tensorflow-yolov4实施方法的更多相关文章

  1. SAP实施方法与过程——ASAP

    ASAP是SAP公司为使R/3项目的实施更简单.更有效的一套完整的快速实施方法.ASAP优化了在实施过程中对时间.质量和资源的有效使用等方面的控制.它是一个包括了使得项目实施得以成功所有基本要素的完整 ...

  2. TensorFlow 图片resize方法

    参见这篇博客 tensorflow里面用于改变图像大小的函数是tf.image.resize_images(image, (w, h), method):image表示需要改变此存的图像,第二个参数改 ...

  3. tensorflow冻结变量方法(tensorflow freeze variable)

    最近由于项目需要,要对tensorflow构造的模型中部分变量冻结,然后继续训练,因此研究了一下tf中冻结变量的方法,目前找到三种,各有优缺点,记录如下: 1.名词解释 冻结变量,指的是在训练模型时, ...

  4. 影响ERP成功实施的因素及实施方法

    一.影响ERP实施的因素 1.企业自身管理和认识上的问题.在ERP实施过程中没有用变革管理的理念和方法来策划和管理ERP的实施是导致ERP失败的主要原因. ERP作为一种管理工具他的实施本身就是操作手 ...

  5. tensorflow mac安装方法

    480  pip install https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl 481 ...

  6. tensorflow的assgin方法

    官网API是这么说的 This operation outputs a Tensor that holds the new value of 'ref' after the value has bee ...

  7. YOLOv4:目标检测(windows和Linux下Darknet 版本)实施

    YOLOv4:目标检测(windows和Linux下Darknet 版本)实施 YOLOv4 - Neural Networks for Object Detection (Windows and L ...

  8. TensorFlow+实战Google深度学习框架学习笔记(10)-----神经网络几种优化方法

    神经网络的优化方法: 1.学习率的设置(指数衰减) 2.过拟合问题(Dropout) 3.滑动平均模型(参数更新,使模型在测试数据上更鲁棒) 4.批标准化(解决网络层数加深而产生的问题---如梯度弥散 ...

  9. TensorFlow——学习率衰减的使用方法

    在TensorFlow的优化器中, 都要设置学习率.学习率是在精度和速度之间找到一个平衡: 学习率太大,训练的速度会有提升,但是结果的精度不够,而且还可能导致不能收敛出现震荡的情况. 学习率太小,精度 ...

随机推荐

  1. SpringCloud之服务网关Gateway,入门+实操

    SpringCloudAlibaba微服务实战教程系列 Spring Cloud 微服务架构学习记录与示例 一. GateWay简介 Spring Cloud GateWay是Spring Cloud ...

  2. hdu4122 制作月饼完成订单的最小花费

    题意:       有一个加工厂加工月饼的,这个工厂一共开业m小时,2000年1月1日0点是开业的第一个小时,每个小时加工月饼的价钱也不一样,然后每个月饼的保质期都是t天,因为要放在冰箱里保存,所以在 ...

  3. UVA10970大块巧克力

    题意:       题意,给你一块n*m的巧克力,最终是要把他切成n*m快小蛋糕,问最小切多少刀?每一刀只能把一个整体切成两个整体,不可以把两个整体分成四个整体,就是说只能切一个地方. 思路:     ...

  4. 3.PHP条件语句及其字符串相关函数

    PHP条件语句 <?php    $number = rand(1,100);    if($number % 2 == 0){        echo "%2";    } ...

  5. php 获取某年后的日期

    比如两年后:date('Y-m-d',strtotime('+2 year')) 月份year改成month

  6. 基于ray的分布式机器学习(二)

    基本思路:基于parameter server + multiple workers模式.同步方式:parameter server负责网络参数的统一管理,每次迭代均将参数发送给每一个worker,多 ...

  7. 分布式RPC框架Dubbo实现服务治理:集成Kryo实现高速序列化,集成Hystrix实现熔断器

    Dubbo+Kryo实现高速序列化 Dubbo RPC是Dubbo体系中最核心的一种高性能,高吞吐量的远程调用方式,是一种多路复用的TCP长连接调用: 长连接: 避免每次调用新建TCP连接,提高调用的 ...

  8. JAVA并发(1)-AQS(亿点细节)

    AQS(AbstractQueuedSynchronizer), 可以说的夸张点,并发包中的几乎所有类都是基于AQS的. 一起揭开AQS的面纱 1. 介绍 为依赖 FIFO阻塞队列 的阻塞锁和相关同步 ...

  9. path自定义转换器

    register-converter用于注册转换器

  10. opencv——形态学深究(分析和应用)

    摘要: 形态学一般指生物学中研究动物和植物结构的一个分支.用数学形态学(也称图像代数)表示以形态为基础对图像进行分析的数学工具. 基本思想是用具有一定形态的结构元素去度量和提取图像中的对应形状以达到对 ...