tensorflow-yolov4实施方法

tensorflow-yolov4-tflite

YOLOv4: Optimal Speed and Accuracy of Object Detection

文献链接:https://arxiv.org/abs/2004.10934

代码链接:https://github.com/AlexeyAB/darknet

摘要

有大量的特征被认为可以提高卷积神经网络(CNN)的精度。需要在大型数据集上对这些特征的组合进行实际测试,并对结果进行理论证明。某些功能只在某些模型上操作,某些问题只在某些模型上操作,或只在小规模数据集上操作;而某些功能(如批处理规范化和剩余连接)适用于大多数模型、任务和数据集。我们假设这些通用特征包括加权剩余连接(WRC)、跨阶段部分连接(CSP)、跨小批量规范化(CmBN)、自对抗训练(SAT)和Mish激活。使用了新功能:WRC、CSP、CmBN、SAT、误激活、马赛克数据增强、CmBN、DropBlock正则化和CIoU丢失,并将其中一些功能结合起来,以达到最新的结果:43.5%AP(65.7%AP50)的MS COCO数据集,在Tesla V100上以约65 FPS的实时速度。

YOLOv4 Implemented in Tensorflow 2.0. Convert YOLO v4, YOLOv3, YOLO tiny .weights to .pb, .tflite and trt format for tensorflow, tensorflow lite, tensorRT.

Download yolov4.weights file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT

环境需要Prerequisites

  • Tensorflow 2.1.0
  • tensorflow_addons 0.9.1 (required for mish activation)

Demo

# yolov4

python detect.py --weights ./data/yolov4.weights --framework tf --size 608 --image ./data/kite.jpg

# yolov4 tflite

python detect.py --weights ./data/yolov4-int8.tflite --framework tflite --size 416 --image ./data/kite.jpg

Convert to tflite

# yolov4
python convert_tflite.py --weights ./data/yolov4.weights --output ./data/yolov4.tflite
 
# yolov4 quantize float16
python convert_tflite.py --weights ./data/yolov4.weights --output ./data/yolov4-fp16.tflite --quantize_mode float16
 
# yolov4 quantize int8
python convert_tflite.py --weights ./data/yolov4.weights --output ./data/yolov4-fp16.tflite --quantize_mode full_int8 --dataset ./coco_dataset/coco/val207.txt

Convert to TensorRT

# yolov3
python save_model.py --weights ./data/yolov3.weights --output ./checkpoints/yolov3.tf --input_size 416 --model yolov3
python convert_trt.py --weights ./checkpoints/yolov3.tf --quantize_mode float16 --output ./checkpoints/yolov3-trt-fp16-416
 
# yolov3-tiny
python save_model.py --weights ./data/yolov3-tiny.weights --output ./checkpoints/yolov3-tiny.tf --input_size 416 --tiny
python convert_trt.py --weights ./checkpoints/yolov3-tiny.tf --quantize_mode float16 --output ./checkpoints/yolov3-tiny-trt-fp16-416
 
# yolov4
python save_model.py --weights ./data/yolov4.weights --output ./checkpoints/yolov4.tf --input_size 416 --model yolov4
python convert_trt.py --weights ./checkpoints/yolov4.tf --quantize_mode float16 --output ./checkpoints/yolov4-trt-fp16-416

Evaluate on COCO 2017 Dataset

# run script in /script/get_coco_dataset_2017.sh to download COCO 2017 Dataset
# preprocess coco dataset
cd data
mkdir dataset
cd ..
cd scripts
python coco_convert.py --input ./coco/annotations/instances_val2017.json --output val2017.pkl
python coco_annotation.py --coco_path ./coco 
cd ..
 
# evaluate yolov4 model
python evaluate.py --weights ./data/yolov4.weights
cd mAP/extra
python remove_space.py
cd ..
python main.py --output results_yolov4_tf

mAP50 on COCO 2017 Dataset

 

Benchmark

python benchmarks.py --size 416 --model yolov4 --weights ./data/yolov4.weights

TensorRT performance

训练模型

# Prepare your dataset
# If you want to train from scratch:
In config.py set FISRT_STAGE_EPOCHS=0 
# Run script:
python train.py
# Transfer learning: 
python train.py --weights ./data/yolov4.weights

训练性能还没有完全重现,建议使用Alex的Darknet训练自己的数据,然后将.weights转换为tensorflow或tflite。

 

tensorflow-yolov4实施方法的更多相关文章

  1. SAP实施方法与过程——ASAP

    ASAP是SAP公司为使R/3项目的实施更简单.更有效的一套完整的快速实施方法.ASAP优化了在实施过程中对时间.质量和资源的有效使用等方面的控制.它是一个包括了使得项目实施得以成功所有基本要素的完整 ...

  2. TensorFlow 图片resize方法

    参见这篇博客 tensorflow里面用于改变图像大小的函数是tf.image.resize_images(image, (w, h), method):image表示需要改变此存的图像,第二个参数改 ...

  3. tensorflow冻结变量方法(tensorflow freeze variable)

    最近由于项目需要,要对tensorflow构造的模型中部分变量冻结,然后继续训练,因此研究了一下tf中冻结变量的方法,目前找到三种,各有优缺点,记录如下: 1.名词解释 冻结变量,指的是在训练模型时, ...

  4. 影响ERP成功实施的因素及实施方法

    一.影响ERP实施的因素 1.企业自身管理和认识上的问题.在ERP实施过程中没有用变革管理的理念和方法来策划和管理ERP的实施是导致ERP失败的主要原因. ERP作为一种管理工具他的实施本身就是操作手 ...

  5. tensorflow mac安装方法

    480  pip install https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl 481 ...

  6. tensorflow的assgin方法

    官网API是这么说的 This operation outputs a Tensor that holds the new value of 'ref' after the value has bee ...

  7. YOLOv4:目标检测(windows和Linux下Darknet 版本)实施

    YOLOv4:目标检测(windows和Linux下Darknet 版本)实施 YOLOv4 - Neural Networks for Object Detection (Windows and L ...

  8. TensorFlow+实战Google深度学习框架学习笔记(10)-----神经网络几种优化方法

    神经网络的优化方法: 1.学习率的设置(指数衰减) 2.过拟合问题(Dropout) 3.滑动平均模型(参数更新,使模型在测试数据上更鲁棒) 4.批标准化(解决网络层数加深而产生的问题---如梯度弥散 ...

  9. TensorFlow——学习率衰减的使用方法

    在TensorFlow的优化器中, 都要设置学习率.学习率是在精度和速度之间找到一个平衡: 学习率太大,训练的速度会有提升,但是结果的精度不够,而且还可能导致不能收敛出现震荡的情况. 学习率太小,精度 ...

随机推荐

  1. 【MRR】转-MySQL 的 MRR 优化

    MRR,全称「Multi-Range Read Optimization」. 简单说:MRR 通过把「随机磁盘读」,转化为「顺序磁盘读」,从而提高了索引查询的性能. 至于: 为什么要把随机读转化为顺序 ...

  2. 设计模式-UML图简单介绍

    直接上法宝: 1.类(Class)     类图分三层:     第一层显示类的名称,如果是抽象类,则就用斜体显示.     第二层是类的特性,通常就是字段和属性.     第三层是类的操作,通常是方 ...

  3. Win64 驱动内核编程-6.内核里操作注册表

    内核里操作注册表 RING0 操作注册表和 RING3 的区别也不大,同样是"获得句柄->执行操作->关闭句柄"的模式,同样也只能使用内核 API 不能使用 WIN32 ...

  4. mimikatz的使用

    mimikatz mimikatz是法国人Gentil Kiwi编写的一款Windows平台下的神器,它具备很多功能,其中最主要的功能是直接从 lsass.exe 进程里获取处于active状态账号的 ...

  5. Win64 驱动内核编程-21.DKOM隐藏和保护进程

    DKOM隐藏和保护进程 主要就是操作链表,以及修改节点内容. DKOM 隐藏进程和保护进程的本质是操作 EPROCESS 结构体,不同的系统用的时候注意查下相关定义,确定下偏移,下面的数据是以win7 ...

  6. 【js】Leetcode每日一题-数组异或操作

    [js]Leetcode每日一题-数组异或操作 [题目描述] 给你两个整数,n 和 start . 数组 nums 定义为:nums[i] = start + 2*i(下标从 0 开始)且 n == ...

  7. linux命令解压压缩rar文件

    一.widonds下打包rar文件并上传 yum install lrzsz rz test.rar 二.下载并安装rar软件 2.1 下载 mkdir -p /home/oldboy/tools c ...

  8. SQLFlow使用中的注意事项--设置篇

    SQLFlow 是用于追溯数据血缘关系的工具,它自诞生以来以帮助成千上万的工程师即用户解决了困扰许久的数据血缘梳理工作. 数据库中视图(View)的数据来自表(Table)或其他视图,视图中字段(Co ...

  9. Pytorch_Part5_迭代训练

    VisualPytorch beta发布了! 功能概述:通过可视化拖拽网络层方式搭建模型,可选择不同数据集.损失函数.优化器生成可运行pytorch代码 扩展功能:1. 模型搭建支持模块的嵌套:2. ...

  10. Java Arrays.sort()重写comparator方法

    先看一下接口 Arrays.sort(T[],Comparator<? super T> c); comparator要重写compare方法 compare方法大概长这样,返回值> ...