tensorflow-yolov4实施方法
tensorflow-yolov4实施方法
tensorflow-yolov4-tflite
YOLOv4: Optimal Speed and Accuracy of Object Detection
文献链接:https://arxiv.org/abs/2004.10934
代码链接:https://github.com/AlexeyAB/darknet
摘要
有大量的特征被认为可以提高卷积神经网络(CNN)的精度。需要在大型数据集上对这些特征的组合进行实际测试,并对结果进行理论证明。某些功能只在某些模型上操作,某些问题只在某些模型上操作,或只在小规模数据集上操作;而某些功能(如批处理规范化和剩余连接)适用于大多数模型、任务和数据集。我们假设这些通用特征包括加权剩余连接(WRC)、跨阶段部分连接(CSP)、跨小批量规范化(CmBN)、自对抗训练(SAT)和Mish激活。使用了新功能:WRC、CSP、CmBN、SAT、误激活、马赛克数据增强、CmBN、DropBlock正则化和CIoU丢失,并将其中一些功能结合起来,以达到最新的结果:43.5%AP(65.7%AP50)的MS COCO数据集,在Tesla V100上以约65 FPS的实时速度。
YOLOv4 Implemented in Tensorflow 2.0. Convert YOLO v4, YOLOv3, YOLO tiny .weights to .pb, .tflite and trt format for tensorflow, tensorflow lite, tensorRT.
Download yolov4.weights file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT
环境需要Prerequisites
- Tensorflow 2.1.0
- tensorflow_addons 0.9.1 (required for mish activation)
Demo
# yolov4
python detect.py --weights ./data/yolov4.weights --framework tf --size 608 --image ./data/kite.jpg
# yolov4 tflite
python detect.py --weights ./data/yolov4-int8.tflite --framework tflite --size 416 --image ./data/kite.jpg
Convert to tflite
# yolov4
python convert_tflite.py --weights ./data/yolov4.weights --output ./data/yolov4.tflite
# yolov4 quantize float16
python convert_tflite.py --weights ./data/yolov4.weights --output ./data/yolov4-fp16.tflite --quantize_mode float16
# yolov4 quantize int8
python convert_tflite.py --weights ./data/yolov4.weights --output ./data/yolov4-fp16.tflite --quantize_mode full_int8 --dataset ./coco_dataset/coco/val207.txt
Convert to TensorRT
# yolov3
python save_model.py --weights ./data/yolov3.weights --output ./checkpoints/yolov3.tf --input_size 416 --model yolov3
python convert_trt.py --weights ./checkpoints/yolov3.tf --quantize_mode float16 --output ./checkpoints/yolov3-trt-fp16-416
# yolov3-tiny
python save_model.py --weights ./data/yolov3-tiny.weights --output ./checkpoints/yolov3-tiny.tf --input_size 416 --tiny
python convert_trt.py --weights ./checkpoints/yolov3-tiny.tf --quantize_mode float16 --output ./checkpoints/yolov3-tiny-trt-fp16-416
# yolov4
python save_model.py --weights ./data/yolov4.weights --output ./checkpoints/yolov4.tf --input_size 416 --model yolov4
python convert_trt.py --weights ./checkpoints/yolov4.tf --quantize_mode float16 --output ./checkpoints/yolov4-trt-fp16-416
Evaluate on COCO 2017 Dataset
# run script in /script/get_coco_dataset_2017.sh to download COCO 2017 Dataset
# preprocess coco dataset
cd data
mkdir dataset
cd ..
cd scripts
python coco_convert.py --input ./coco/annotations/instances_val2017.json --output val2017.pkl
python coco_annotation.py --coco_path ./coco
cd ..
# evaluate yolov4 model
python evaluate.py --weights ./data/yolov4.weights
cd mAP/extra
python remove_space.py
cd ..
python main.py --output results_yolov4_tf
mAP50 on COCO 2017 Dataset
Benchmark
python benchmarks.py --size 416 --model yolov4 --weights ./data/yolov4.weights
TensorRT performance


训练模型
# Prepare your dataset
# If you want to train from scratch:
In config.py set FISRT_STAGE_EPOCHS=0
# Run script:
python train.py
# Transfer learning:
python train.py --weights ./data/yolov4.weights
训练性能还没有完全重现,建议使用Alex的Darknet训练自己的数据,然后将.weights转换为tensorflow或tflite。

tensorflow-yolov4实施方法的更多相关文章
- SAP实施方法与过程——ASAP
ASAP是SAP公司为使R/3项目的实施更简单.更有效的一套完整的快速实施方法.ASAP优化了在实施过程中对时间.质量和资源的有效使用等方面的控制.它是一个包括了使得项目实施得以成功所有基本要素的完整 ...
- TensorFlow 图片resize方法
参见这篇博客 tensorflow里面用于改变图像大小的函数是tf.image.resize_images(image, (w, h), method):image表示需要改变此存的图像,第二个参数改 ...
- tensorflow冻结变量方法(tensorflow freeze variable)
最近由于项目需要,要对tensorflow构造的模型中部分变量冻结,然后继续训练,因此研究了一下tf中冻结变量的方法,目前找到三种,各有优缺点,记录如下: 1.名词解释 冻结变量,指的是在训练模型时, ...
- 影响ERP成功实施的因素及实施方法
一.影响ERP实施的因素 1.企业自身管理和认识上的问题.在ERP实施过程中没有用变革管理的理念和方法来策划和管理ERP的实施是导致ERP失败的主要原因. ERP作为一种管理工具他的实施本身就是操作手 ...
- tensorflow mac安装方法
480 pip install https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl 481 ...
- tensorflow的assgin方法
官网API是这么说的 This operation outputs a Tensor that holds the new value of 'ref' after the value has bee ...
- YOLOv4:目标检测(windows和Linux下Darknet 版本)实施
YOLOv4:目标检测(windows和Linux下Darknet 版本)实施 YOLOv4 - Neural Networks for Object Detection (Windows and L ...
- TensorFlow+实战Google深度学习框架学习笔记(10)-----神经网络几种优化方法
神经网络的优化方法: 1.学习率的设置(指数衰减) 2.过拟合问题(Dropout) 3.滑动平均模型(参数更新,使模型在测试数据上更鲁棒) 4.批标准化(解决网络层数加深而产生的问题---如梯度弥散 ...
- TensorFlow——学习率衰减的使用方法
在TensorFlow的优化器中, 都要设置学习率.学习率是在精度和速度之间找到一个平衡: 学习率太大,训练的速度会有提升,但是结果的精度不够,而且还可能导致不能收敛出现震荡的情况. 学习率太小,精度 ...
随机推荐
- 【转】gitlab CI流水线配置文件.gitlab-ci.yml详解
目录 GitLab CI流水线配置文件.gitlab-ci.yml详解 实验环境 GitLab CI介绍 .gitlab-ci.yml 配置参数 参数详解 script image services ...
- hdu3329 二分+搜索
题意: 给你一个岛,然后岛的外侧开始涨水(内侧不涨只有外侧,也就是里面的0永远是0),问最少涨水多少才能把岛分成两个或者两个以上. 思路: 可以二分枚举水的高度(数据不大估计暴 ...
- hdu2722 简单最短路,处理好输入就行
题意: 从左上角走到右下角,有的最短时间,每段路径的长度都是2520,每段上都有自己的限制速度,方向. 思路: 直接写就行了,就是个最短路,权值是2520/限制,输入的时候细心点 ...
- dex文件格式学习
一.dex文件的生成 我们可以通过java文件来生成一个简单的dex文件 编译过程: 首先编写java代码如下: (1) 编译成 java class 文件 执行命令 : javac Hello.ja ...
- 神经网络与机器学习 笔记—Rosenblatt感知机
Rosenblatt感知机器 感知器在神经网络发展的历史上占据着特殊位置:它是第一个从算法上完整描述的神经网络.它的发明者Rosenblatt是一位心里学家,在20世纪60年代和70年代,感知器的启发 ...
- Day006 命令行传参
命令行传参 有时候你希望运行一个程序时候再传递给它消息,这要靠传递命令行参数给main()函数实现. 使用方法 写测试代码. public static void main(String[] args ...
- mac打开class文件
本来不想写这个东西的.但是这个却费了我一番周折. 我要先声明一点的是,我从来不讲iOS当成一个单独的系统,而是将这个操作系统归位unix内核的系统. 简单来说,我把它当成linux在用. 但是,mac ...
- Charles的功能(web)
# 验证是否可以获取web端的https接口 1. 打开Charles 2.打开游览器输入数据 3. 查看Charles 4.从上图所看,能获取htpps的包数据,即可对web端进行抓包 4.char ...
- UVA 160 - Factors and Factorials
Factors and Factorials The factorial of a number N (written N!) is defined as the product of all t ...
- Python编写abaqus后处理脚本(学习笔记)
本节内容参考自书籍<Python语言在Abaqus中的应用>,注意:以下代码为伪代码,仅供参考 1.导入必要的模块,加载后处理odb文件 from abaqus import * from ...

